THE RELATIONSHIP BETWEEN THE MAGNITUDE OF SINGLE-DAY STOCK PRICE DECLINES AND SUBSEQUENT ABNORMAL RETURNS

Austin Rodgers
Primary Advisor: Alan Kirkpatrick, PhD
Secondary Advisor: Lucile Sabas, PhD

The Beginning

8STAGE

Background

- Contrarian Investing
- Investor Overreaction Hypothesis
-"Buying the Dip"

What IS Abnormal Return?

Actual
Return
Predicted Return
Abnormal
Return

Prior Literature

Profits Possible Utilizing this Strategy	$\underline{\text { No Profits Possible Utilizing }}$this Strategy

- Atkins \& Dyl (1990)
- Benou \& Richie (2003)
- Bremer \& Sweeney (1991)
- Ma, Tang, \& Hasan (2005)
- Himmemann \& Schiereck (2010)
- Larson \& Madura (2003)
- Park, J. (1995)
- Ma, Tang, \& Hasan (2005)

Primary Research Question and Hypothesis

Question:

Does the magnitude of a stock's "large" single-day price decline display an inverse relationship to the stocks subsequent abnormal return?

Hypothesis:
Yes, an inverse relationship between the magnitude of initial decline and subsequent abnormal return will be observed.

Methodology

1. Define Date Range
2. Gather Sample
3. Calculate Predicted Returns
4. Calculate CAR
5. Perform Regression Analysis

Methodology: Date Range and Data Sample

Obervation Date Range:

July 1, 2017-June 30, 2018

Cumulative Abnormal Return (CAR)
Observation Time Periods:

- 10 Trading Days
- 1 Month
- 3 Months
- 6 Months

Nasdaq	NTYSE
- Lower listing requirements	-Hore volatile - Higher listing requirements technology stration of
	-Less volatile Lower concentration of technology stocks

Methodology: Data Sample (Cont.)

| | $\begin{array}{c}\text { Events Excluding } \\ \text { Beginning Share prices } \\ <\$ 10\end{array}$ | | |
| :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Adjustment for

Unavailable Betas\end{array}\right]\)| 36 |
| :---: |
| July 2017 Total Events |

Methodology: Calculating Predicted Returns

Capital Asset Pricing Model:

$$
R_{j t}=R_{f t}+\beta_{j}\left(R_{m t}-R_{f t}\right)
$$

$R_{j t}=$ Expected Return on stock " j " over time " t "
$R_{f t}=$ Risk-free rate of return over time " t "
$\beta_{j}=$ Beta of stock " \bar{j} "
$R_{m t}=$ Return of the market over time " t "

Methodology: Calculating Cumulative Abnormal Returns

1. Calculated the Abnormal Return for each trading day up to six months subsequent to each event in sample
2. Summed up daily abnormal returns for each time period observed:

- 10 Trading Days
- 1 Month
- 3 Months
- 6 Months

Methodology: Regression Model

Regression Model:

$$
\operatorname{CAR}=a+b\left(M_{d j t}\right)+\varepsilon
$$

$C A R=$ Cumulative Abnormal Return
$M_{d j t}=$ Magnitude of initial single-day stock price decline
$\varepsilon=$ Error term

- Ran model four times-once for each time period subsequent to initial price decline over which CAR was calculated.

Results

Time Period	CAR	t-Value
10-day	-0.0086	-1.04
	(0.082812)	
1-Month	-0.0067	-0.056
	(0.119205)	
3-Month	0.14	0.73
	(0.193432)	
6-Month	0.08	0.31
	(0.259122)	
$\mathrm{N}=444$		

Results (Cont.)

Time Period	CAR	t-Value
10-day	-0.157	-0.93
	(0.167867)	
1-Month	0.0373	0.176
	(0.211428)	
3-Month	0.177	0.515
	(0.343332)	
6-Month	-0.18	-0.383
	(0.473798)	
$\mathbf{N}=167$		

Discussion

- Statistical significance not achieved
- We cannot recommend that investors design their strategies utilizing the magnitude of singleday stock price declines as a dominant factor
- Economically speaking, the results provide insight into potential further research and possible investor considerations.
- Coefficients were only negative (in-line with expectations) for the 10-day and 1-month time periods for the initial set of regressions
- Coefficients for 6-month timeframe switched from positive to negative with second set of regressions

Further Research

- Further research is warranted to examine further both short-term and long-term relationships between the magnitude of initial decline and subsequent abnormal return
- 10-trading day time frame exhibited the highest T-Values
- Coefficient for the 6 -month time frame switched to negative when only events with initial price declines of greater than 15 percent were included
- Higher Threshold for "large price declines"
- Larger sample size

Acknowledgements

Dr. Alan Kirkpatrick

Dr. Lucile Sabas

Office of Research and Creative Scholarship
J.N. Andrews Honors Program

Selected References

- Amini, S., Gebka, B., Hudson, R., \& Keasey, K. (2013). A review of the international literature on the short term predictability of stock prices conditional on large prior price changes: Microstructure, behavioral and risk related explanations. International Review of Financial Analysis, 26, 1-17. doi:10.1016/j.irfa.2012.04.002
- Atkins, A. B., \& Dyl, E. A. (1990). Price Reversals, Bid-Ask Spreads, and Market Efficiency. The Journal of Financial and Quantitative Analysis,25(4), 535. doi:10.2307/2331015
- Benou, G., \& Richie, N. (2003). The reversal of large stock price declines: The case of large firms. Journal of Economics and Finance,27(1), 19-38. doi:10.1007/bf02751588
- Bremer, M., \& Sweeney, R. J. (1991). The Reversal of Large Stock-Price Decreases. The Journal of Finance,46(2), 747. doi:10.2307/2328846
- Himmelmann, A., Schiereck, D., Simpson, M. W., \& Zschoche, M. (2010). Long-term reactions to large stock price declines and increases in the European stock market: A note on market efficiency. Journal of Economics and Finance,36(2), 400-423. doi:10.1007/s12197-010-9125-z

Selected References (Cont.)

- Larson, S. J., \& Madura, J. (2003). What Drives Stock Price Behavior Following Extreme One-Day Returns. Journal of Financial Research,26(1), 113-127. doi:10.1111/1475-6803.00048
- Ma, Y., Tang, A. P., \& Hasan, T. (2005). The Stock Price Overreaction Effect: Evidence on Nasdaq Stocks. Quarterly Journal of Business and Economics,44(3/4), 113.
- Park, J. (1995). A Market Microstructure Explanation for Predictable Variations in Stock Returns following Large Price Changes. The Journal of Financial and Quantitative Analysis,30(2), 241. doi:10.2307/2331119

