Finding Optimal Input Parameters for BayesWave Kelsey Rook Research Advisor: Dr. Tiffany Summerscales Andrews University Department of Computer Science J.N. Andrews Honors Program

What are Gravitational Waves?

- Ripples in spacetime
- Einstein's general relativity
- Stretch and squash of space
- Gravitational wave sources
 - Compact Binary Inspiral

LIGO: The Gravitational Wave Observatory

- Laser Interferometer Gravitational-wave Observatory (LIGO)
- Washington and Louisiana Interferometers (Abbott, 2009)
- First detection: September 14, 2015 (Abbott, 2016)

LIGO's Hanford and Livingston observatories https://www.ligo.caltech.edu/ima ges?category=photograph

LIGO: The Gravitational Wave Observatory

- Laser Interferometer Gravitational-wave Observatory (LIGO)
- Michelson Interferometer
 - L-shaped
 - Mirrors reflect light to create interference
 - Photodetector measures interference

Basic Michelson Interferometer https://www.ligo.caltech.edu/system/media_f iles/binaries/237/medium/Basic_michelson_l abeled.jpg?1435862648

- Why BayesWave?
 - Poorly defined models
 - Noise and glitches obscure signal (Berger, 2018)
- BayesWave algorithm
 - Isolates unmodelled signals
 - Characterizes

accompanying noise

- Classification:
 - Gaussian Noise
 - Gaussian Noise with glitch
 - Gaussian Noise with signal
- Signal-to-noise ratio (SNR)

- Bayesian inference
 - Signal and glitch priors
 - Most likely value: SNR*
 - Posterior distribution

Glitch prior distribution (red) and signal prior distribution (blue) (Cornish, 2015)

Research Goal

Find which parameter combination results in best classification

Run BayesWave...

With multiple parameter combinations

- Glitch prior peak: 2, 4, 6, 8
- Amplitude prior peak: 2, 4, 6

On two data sets

- LIGO noise only
- LIGO noise injected with binary black hole (bbh) signals

Results

Glitch/Signal Prior Peak	Old BW	New BW
2, 2	.33	.28
2, 4	.29	.25
2, 6	.28	.29
2, 8	.29	.29
4, 2	NA	.26
4, 4	NA	.23
4, 6	.27	NA
4, 8	.24	NA
6, 2	.26	NA
6, 4	.37	NA
6, 6	.38	NA
6, 8	.37	NA

$$F1 = 2 * \frac{Precision * Recall}{Precision + Recall}$$

Results

Conclusion

- Best results:
 - Signal prior peak: 6
 - Glitch prior peak: 6
 - Results in F1 score of 0.38

Acknowledgements

- Dr. Tiffany Summerscales, advisor
- Andrews University
 - Department of Physics
 - Department of Computer Science
 - J.N. Andrews Honors Program

Neil J. Cornish and Tyson B. Littenberg. "BayesWave: Bayesian inference for gravitational wave bursts and instrument glitches," *Classical and Quantum Gravity*, 32(13):135012, Jun 2015.

B.K. Berger, "Identification and mitigation of advanced LIGO noise sources," *Journal of Physics: Conference Series*, vol. 957, no. 1. IOP Publishing, 2018, p. 012004.

B.P. Abbott et. al. "Gw150914: The advanced LIGO detectors in the era of first discoveries," 02 2106.

B.P. Abbott et. al. "LIGO: the laser interferometer gravitational-wave observatory," *Reports on Progress in Physics*, 72(7):076901, 2009.