Lectin Properties of Synthetically produced Glucoronate, Alginate, and Related Boronates

Vanessa Angel

Dr. Karen Reiner

Medical Laboratory Science

J. N. Andrews Honors Program

Research Question

Do synthetically produced compounds have lectin properties through agglutination with different red blood cell types?

Goals

- Test synthetically produced compounds with A positive, B positive, and O positive cells
- Determine lectin characteristics of compounds through visible agglutination
- Lectin applications in the medical field:
 - Blood grouping
 - Mitogenic activity
 - Stem Cell Transplantation

Background on Lectins

- Derived from the Latin word "legere," meaning to choose or to "select"
- Lectin sources:
 - Seeds of leguminous plants
 - Fruiting bodies of fungi
 - animals
- 19th Century researchers discovered the ability of some proteins to agglutinate red blood cells
- Originally named, "phytohemagglutins" or "hemagglutinins"
- Later, particular hemagglutinins were found to agglutinate red blood cells of a particular human blood group in the ABO blood group system

Major historical Lectin Landmarks in history

- Peter Stillmark (1888)
 - Isolated toxic extracts from seeds of castor tree (Ricinus communis)
 - Major Discovery: Hemagglutinating proteins agglutinated erythrocytes (Red blood cells) and named them "ricin"
- William Boyd and Karl Renkonen (1940)
 - Major discovery: Extracts of lima bean, Phaseolus limensis agglutinated blood type A, but not type B or type O
- W. G. Bird (1959)
 - Major discovery: Precipitants from Dolichos biflorus seeds reacted with part of the A-substance of human red blood cells, specifically an A-substance component from individuals of sub-groups A1 and A2

Intro to agglutination method

- Agglutination of human red blood cells will be tested for lectin activity
- Definition of agglutination: standard serological method in the clinical laboratory to detect antibodyantigen interactions through visible clumping and is graded on a scale
- Antibody: Produced in response of a foreign substance entering the body (Defense)
 - Comparison: Superhero
- Antigen: Foreign substance that induced the immune substance to produce antibodies
 - Comparison: Villain

https://www.ck12.org/book /ck-12-biologyconcepts/section/13.48/

Agglutination reactions

https://www.indiamart.com/ proddetail/test-tubeagglutination-viewer-21718451048.html

Method

- Prepare stock solution
 - 0.02 grams of compound with 0.5 grams of DMSO and 0.5 ml of normal saline (0.9 NaCl)
- Test Compounds with red blood with known ABO Rh type in 12 x 75 mm tube along with control with each run
 - Control: 0.5 ml of DMSO and 0.5 ml of normal saline
- Add one drop of stock solution with one drop of red blood cells
 - A positive
 - B positive
 - O positive
- Five compounds, two tested
 - 4-bromomethyl phenyl boronic acid and glucuronic acid (compound 1)
 - 2-bromomethyl phenyl boronic acid and acetylneuraminic acid (compound 2)

Typical Day in the Lab...

Structure for compound 2

2-bromomethyl phenyl boronic acid and acetylneuraminic acid

Results with the tube method

Results under the microscope

A Positive (Negative)

B Positive: Slight agglutination

O Positive: (Negative)

Conclusion, further Research, and Limitations

- 2-bromomethyl phenyl boronic acid and acetylneuraminic acid showed some slight agglutination with B positive cells
- These results suggest some selective hemagglutination or lectin activity for compound 2
- Further Research:
 - Test compound 2 lectin activity with Rh negative phenotypes
 - Explore different solvents since solubility was a problem
- Limitations
 - Solubility
 - Quality Control with DMSO

Bibiliography

- Etzler, M. E., & Kabat, E. A. (1970). Purification and characterization of a lectin (plant hemagglutinin) with blood group A specificity from Dolichos biflorus. Biochemistry, 9(4), 869-877.
- Fung, M. K., Eder, A., Spitalnik, S. L., & Westhoff, C. M. (2017). Technical Manual. Bethesda,
- Ghazarian, H., Idoni, B., & Oppenheimer, S. B. (2011). A glycobiology review: Carbohydrates,
- Lectins, and implications in cancer therapeutics. NCBIS. doi: 10.1016/jcthis.2010.02.004.
- Goldstein, I. J., Hughes, R. C., Monsigny, M., Osawa, T., & Sharon, N. (1980). What should be
- Gorakshakar, A., & Ghosh, K. (2016). Use of lectins in immunohematology. Asian Journal of Transfusion Science, 10(1), 12. doi: 10.4103/0973-6247.172180.
- Howard, P. R., & Blaney, K. D. (2017). Basic & applied concepts of blood banking and transfusion practices. St. Louis, MO: Elsevier.
- Koshar, E. (2018). Synthesis and Agglutinating-Coagulating Properties of Glucuronate, Alginate, and Related Boronates. Unpublished manuscript, Andrews University, Berrien Springs, MI.
- Lagarda-Diaz, I., Guzman-Partida, A. M., Vazquez-Moreno, L. (2017). Legume Lectins: Proteins with Diverse Applications. International Journal of Molecular Sciences, 18(6):1242.
- Lis, H & Sharon, N. (2004). History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology, 14(11). doi: 10.1093/glycob/cwh122.
- Hammid, R., Masood, A., & Rafiq, S. (2013). Lectins: Proteins with Diverse Applications.
- Journal of Applied Pharmaceutical Science, 3(1), S93-S103. doi: 10.7324/JAPS.2013.34.S18.

Acknowledgements

- Andrews University Chemistry Department and Dr. Murray
- Andrews University Medical Laboratory Science and Dr. Reiner
- J. N. Andrews Honors Program

Questions?