
Finding an Embedding for Music 
Auto-Complete: An LSTM Approach

Nathaniel Patterson
Advisor: Dr. Rodney Summerscales

Department of Computing
School of Business Administration, Andrews University



Statement of Research Goals

• Introduce Music Autocomplete as a new problem
• Explore two embedding strategies using a Long Short Term Memory 

Recurrent Neural Network
• Provide commentary on the philosophical consideration of computer 

generated art and the ”predictability” of an artist



Understanding Autocomplete



Background Music Autocomplete

• Polyphonic music generation using “Bi-Axial” LSTM (Johnson 2017)
• “Bachbot” was user tested to discriminate between Bach compositions 

and generated compositions (Liang, et al 2017)
• Text autocomplete is well-developed:
• Story Scrambler (Pawade, et al 2018) focused on LSTM architecture and 

evaluated generated text stories when trained on books in the public domain
• Many other models and embeddings have seen great success in research and 

industry applications



Background Music Autocomplete

• New Problem
• Similar to:
• Music Generation
• Text Autocomplete

• LSTM-RNN (Hochreiter 1997) 
approach provides a good baseline



Methodology

• Select Artist
• Gather Data
• Prepare Data
• Build Model 
• Train the Model
• Evaluate the Model



Note on Erik Satie
• Lived 1866-1925, France
• Witty, Satirical style in league with Surrealist 

Movement
• Music characterized by a refusal to be involved 

in any degree of transcendent significance, 
while disregarding traditional tonal norms
• Trois morceaux en forme de poire (1903)
• Sports et divertissements (1914)

• We recognized 157 piano compositions



Data

• Data is formatted as Musical Instrument 
Digital Interface (MIDI) files
• Classical music is in the Public Domain
• We were able to locate MIDI files for 

roughly 48% (76) of the 157 piano 
compositions
• Some compositions of shorter length were 

combined with other movements. Total file 
count was 49 MIDI files

• Music21 Python library used to translate 
between MIDI and string



Data Representation

• All songs in training set are embedded as a string of notes with spaces 
separating each timestep

• Every note or chord played at a timestep regardless of note stem or 
clef is considered one chord for our purposes



Data Representation

G4G3 D4D3 E4E3 E4E3 B3B2 D4D3 
C#4C#3 B3B2 A2A3 B2B3 G#2G#3 A2A3…

Character 
strategy:

Note 
Strategy:



Data Embeddings

• Test two different embedding 
strategies
• Notes as Characters and Notes as 

Objects
• Both take a string approach with 

timesteps separated by space 
characters



Training Process

• Data split into Training and Testing files 80/20
• Training files were split into training and validation sets
• Loss over validation set was tracked to avoid overfitting
• Process repeated three times and results averaged



Data Flow

MIDI INPUT 
STRING EMBED

PREDICT PREDICTION



Model Evaluation: Char-LSTM

satogv02.mid 

G4G3 D4D3 E4E3 E4E3 B3B2 D4D3 C#4C#3 B3B2 A2A3 B2B3 G#2G#3 A2A3 F#2F#3 E2E3 F#2F#3 A2A3 B2B3 D3D4 C#3C#4 B2B3 B2B3 A2A3 G6D6B5G5G4D4B3G3 
D6B5F#5D5D4B3F#3D3 E6B5G5E5E4B3G3E3 E6B5G5E5E4B3G3E3 B5G5D5B4B3 

['G3D3B2 ', 'F3D3B2 ', 'E3D3B2 ', 'A3E3D3 ', 'C3G3D3 ‘] 

success: ‘G3D3B2‘

satgno05.mid 

D5 G5G2 D4B3G3 F#5 D5 F#5 E5C5C3 E5 E5 E4C4G3 A2 E4C4A3 E2 F#5 G5 A5 E4B5B3G3 C6 D6 E6 F#6 E6 D6G2 B5 D6 D4B3G3 C6 D6 A5D2 D4A3F#3 B5 F#5B1 
B4D4B3F#3 D5 E5E2 B4D5 E5F#5 D5 G5 E4E5B3G3 D5 A5D2 D4A3F#3 

['E4 ', 'C4 ', 'G4 ', 'B4 ', 'D4 ‘] 

correct note/chord is: B5B1 

Input Sequence

Top 5 Predictions

True Value

• Over each independent trial we saw a <20% success rate.
• Success was determined by whether or not the true note 

occurred in the top five suggestions list from the data. 
• Example output:



Visualizing Predictions: Char-LSTM

satogv02.mid 

G4G3 D4D3 E4E3 E4E3 B3B2 D4D3 C#4C#3 B3B2 A2A3 B2B3 G#2G#3 A2A3 F#2F#3 E2E3 F#2F#3 A2A3 B2B3 D3D4 C#3C#4 B2B3 B2B3 A2A3 G6D6B5G5G4D4B3G3 
D6B5F#5D5D4B3F#3D3 E6B5G5E5E4B3G3E3 E6B5G5E5E4B3G3E3 B5G5D5B4B3 

['G3D3B2 ', 'F3D3B2 ', 'E3D3B2 ', 'A3E3D3 ', 'C3G3D3 ‘] 

success: ‘G3D3B2‘

Prediction

Original



Visualizing Predictions: Char-LSTM

satgno05.mid 

D5 G5G2 D4B3G3 F#5 D5 F#5 E5C5C3 E5 E5 E4C4G3 A2 E4C4A3 E2 F#5 G5 A5 E4B5B3G3 C6 D6 E6 F#6 E6 D6G2 B5 D6 D4B3G3 C6 D6 A5D2 D4A3F#3 B5 F#5B1 
B4D4B3F#3 D5 E5E2 B4D5 E5F#5 D5 G5 E4E5B3G3 D5 A5D2 D4A3F#3 

['E4 ', 'C4 ', 'G4 ', 'B4 ', 'D4 ‘] 

correct note/chord is: B5B1 

Prediction

Original



Model Evaluation: Note-LSTM



Model Evaluation: Note-LSTM

• Results not reportable
• Embedding strategy was not well suited for an LSTM

• Too little data and too many notes
• String representation overfitted to space characters



Discussion

• Saw interesting results with the Character based model 
with a <20% success rate over three trials
• Important to let embeddings drive model choice
• Is it fair to assume a model could learn an artist’s style 

solely on his/her works? 
• Would the LSTM model do better if trained on every Satie 

piece?



What is a good prediction?

• Should more attention be given to how 
we determine success? 
• Is it fair to penalize just because it didn’t 

get the exact chord or note?
• Other metrics



Future Work
• A non-string approach that used an 88-length vector for 

each timestep with a 1 for each note played using another 
model architecture should be explored
• Attempting with other artists
• Develop a good Network Architecture for this problem
• RBM?
• LSTM?
• GAN?

• Determine a good metric for analyzing results. What is fair 
to the model?
• Interdisciplinary work



Acknowledgements

• Special thank you to the Honors Program and Department 
of computing for their support in conducting this research 
and presenting in the COVID-19 era.
• Special thanks to Dr. Summerscales for his advice and 

assistance 
• Special thank you to Musicalion for free use of their MIDI 

library for research purposes



Selected Bibliography

Hochreiter, Sepp, and Jürgen Schmidhuber. “Long Short-Term
Memory.” Neural Computation, vol. 9, no. 8, 1997, pp. 1735–1780., 
doi:10.1162/neco.1997.9.8.1735.

Johnson, Daniel D. “Generating Polyphonic Music Using Tied
Parallel Networks.” Computational Intelligence in Music, Sound, Art and 
Design Lecture Notes in Computer Science, 2017, pp. 128–143., 
doi:10.1007/978-3-319-55750-2_9.

Liang, Feynman, et al. “ 18th International Society for 
Music Information Retrieval Conference.” ISMIR, Proceedings of the 
18th ISMIR Conference, Suzhou, China, October 23-27, 2017, 2017, pp. 
449–456.

Pawade, Dipti, et al. “Story Scrambler - Automatic Text Generation Using Word 
Level RNN-LSTM.” International Journal of Information Technology and 
Computer Science, vol. 10, no. 6, 2018, pp. 44–53., 
doi:10.5815/ijitcs.2018.06.05.



Neural Networks

• Goal: learn a function that 
maps input to a given 
output
• Different architectures 

better suited to different 
problems
• Recurrent Neural Network 

(RNN) architecture suited 
to sequential data



Note on Long-Short Term Memory RNN

• LSTM-RNN solved the issue of 
“Long-Term Dependencies” 
• Neural Network for modeling 

sequential data
• Along with learning function, also 

learns what values to keep and 
forget



How do models learn?

• Optimization
• Gradient Descent
• Optimize on loss taken 

over predicted values

https://ruder.io/content/images/2016/09/saddle_point_evaluation_optimizers.gif



Time Series Split

0 10 20 30 40 50 60 70 80 90 100

Fold 4

Fold 3

Fold 2

Fold 1

Fold 0

Training Set Validation Set

• 40 training values tracked over 5 different folds to see where overfitting happens and validation loss 
stops improving

• Once proper number of epochs are decided, then we train on 100 percent of the data



Note on model training

• Find where Accuracy stops 
increasing and Loss stops 
decreasing
• Over each trial we found the 

average overfitting point was 
at ~8 epochs



Model Architecture

The simple LSTM-RNN model used consists of 
three LSTM layers with dropout 0.3 and 512, 
256, and 256 nodes per layer respectively 
and two dense layers one with 256 nodes 
and the other with node count equal to the 
length of the output vector.



Model Evaluation: Char-LSTM

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00%

Trial A

Tr ial B

Tr ial C

Character Based LSTM Average Accuracy

val_acc train_acc

• Model Training over three independent trials


