
CRAWLING TOR’S HIDDEN SERVICES
AND DEPICTING THEIR
INTERCONNECTIVITY
JOHN-LUKE NAVARRO

MENTOR: DR. RODNEY L. SUMMERSCALES

DEPARTMENT OF ENGINEERING AND COMPUTER SCIENCE

THE FALL OF (THE) SILK ROAD

Introduction
Methodology
Results
Conclusions

Presenter
Presentation Notes
In October 2013, the Notorious Online Black Marketplace Silk Road was shut down by the FBI after operating for two years. Before this moment, users could access Silk Road and be confronted with a website not unlike Amazon, but the most popular goods and services here involved drugs. Interestingly enough, when users connected to this site, they could worry less about being tracked, located, and arrested than if they had connected to any other normal site. This is because Silk Road was hosted on the Tor Network.

THE TOR NETWORK

• A privacy-centered network

• Anonymizes users and their websites

• Protects users from being tracked

• Wraps information in layers of encryption

Introduction
Methodology
Results
Conclusions

Presenter
Presentation Notes
The Tor network is free software that enables anonymous and secure online communication. It was originally developed by the United States Naval Research Laboratory for intelligence communications, but they soon realized it would be simple enough to just target whomever is using Tor, and assume they are an operative. In 2004, Tor was released for public use, and nowadays is maintained by the Tor Project, and funded by organizations such as the United States Government, the National Science Foundation, Mozilla, who makes Firefox, and others.

Put simply, Tor allows users to browse the internet without fear of being identified or tracked. Everyone else in here, unless you’re using Tor, identifies themselves online daily, either through logging into social media, allowing devices to store identifiable information, or simply not putting in the relatively complicated effort to mask their online presence. Most of you may not mind, but Tor is there for those whom are very security-minded. Tor prevents you from being tracked or located on the internet, and protects your data through wrapping it in layers of encryption.

WHAT ARE HIDDEN SERVICES?

• Websites hosted on Tor

• Same protections as Tor’s users

• Identifiable by a .onion address

• Example: silkroad6ownowfk.onion

Introduction
Methodology
Results
Conclusions

Presenter
Presentation Notes
Most people use Tor to browse the World Wide Web anonymously, but people aren’t the only ones who benefit from Tor’s security features. Websites can also be hosted on Tor, and these are called hidden services. The same protections available to humans are also available to these hidden services. This means that nobody knows exactly where these websites are located or who owns them. Besides being able to connect to “normal” websites, users on Tor can also connect to these hidden services. Most of them look pretty much the same as normal websites, but their web addresses tend to consist of garbled text with a .onion suffix, which identifies a hidden service.

Most users accessing hidden services do so through the Tor browser, a modified version of Firefox that allows someone to jump into the Tor network without needing a lot of technical know-how.

HOW DOES THE TOR NETWORK FUNCTION?

• A circuit of servers rotates every 10
minutes.

• Each server in the circuit helps wrap
data in layers of encryption

• Each server in the circuit unwraps it’s
individual layer.

Introduction
Methodology
Results
Conclusions

Presenter
Presentation Notes
As mentioned previously, the Tor network is built for privacy and security. All the computers between a user and a hidden service on the Tor network are collectively called a circuit, and this circuit rotates every ten minutes. This ensures that there is no constant weak-link in the network.

Each server is responsible for applying layers of encryption to data on the circuit, like the layers of an onion. Tor is actually short for The Onion Router, and these layers of encryption ensure that if a message is intercepted, it cannot be read.

ENVELOPE
DEMO

Introduction
Methodology
Results
Conclusions

THE DARKNET WEATHERMAP PROJECT

• SULI Appointment

• Cyber Operations, Analysis, and Research

• Project: Produce daily metrics on Tor content
availability, distribution, and “trendiness”

• How can bulk Tor network content be
downloaded with relative ease?

• How can the connections between hidden
services be depicted?

Introduction
Methodology
Results
Conclusions

Example from technologyreview.com

Presenter
Presentation Notes
To finally introduce my project, last summer I had the opportunity to participate in a Scientific Undergraduate Laboratory Internship at Argonne National Laboratory, an open-science lab funded by the United States Department of Energy. I worked with the Cyber Operations, Analysis, and Research team alongside other students working on other cyber security projects.

Another student and I were assigned to work on the Darknet Weathermap Project, which seeks to develop software that generates reports on the categories of content available on “dark” networks like Tor. This project was begun because there is “very little large-scale analysis of content and trends over time” on the Tor network, which would help law enforcement or other agencies plan investigations and potentially react to the next Silk Road ahead of time.

I recognized that to produce this analysis, data from Tor’s hidden services would need to be downloaded. I was inspired by the literature describing the use of web crawlers to download data from Tor. I decided to try a similar approach, but develop the software with security and ease-of-use to the best of my abilities. I recognized that although other researchers used web crawlers for their research, their software was never made available, so I committed myself to make quality software that others could use in the future, including law enforcement professionals whom might not have programming experience.

My mentors also requested I find a way to visualize the data from my project, so I decided to depict links between hidden services on connected graphs. This would allow other researchers or analysts to immediately notice which websites are most popular, or how users might surf the Tor network.

WHAT IS A WEB CRAWLER?

• Automated software that browses the
internet and downloads information
from websites.

• Used by Google and other Search
Engines

Introduction
Methodology
Results
Conclusions

Presenter
Presentation Notes
To define some key points, a web crawler is automated software, sometimes called a “bot”, that downloads information from websites. Web crawlers access the internet similarly to the web browser on your phone or computer, but they download every web page they find. They then click on links, in a manner of speaking, go to those websites, and download those too.

Web crawlers are typically used by Google, Yahoo, or other search engine companies to discover websites and gather the necessary information from them so that they can be searched for. If one of Google’s web crawlers doesn’t find a web page, it will not be searchable using Google.

WHAT ARE CONNECTED GRAPHS?

• Used to show relationships between objects

• Directed graph has arrows

Introduction
Methodology
Results
Conclusions

Facebook Instagram

Pic 1

Pic 2Node

Edge

Presenter
Presentation Notes
A connected graph consists of points, called nodes, and connections between those points, called edges. Connected graphs are used to show relationships between objects and are especially useful for showing links between websites. A graph is “directed” if the edges have arrows that show the directions of relationships

As an example of how connected graphs can be applied to websites, imagine that you're on your Facebook there’s a post that links to Instagram. This can be depicted using a very simple directed, connected graph like this.

If your Facebook has a link to Instagram but Instagram d
oesn’t have a link to Facebook, the relationship is one way, which can be shown by an arrow. Since your Instagram has links to all your pictures, they can be added to this graph as additional nodes and edges.

PREVIOUS WORK

• Cryptopolitik and the Darknet – Moore & Rid
• Developed tools to download and analyze Tor content

• The Tor Dark Net – Gareth & Savage
• Operated multiple Tor data-mining projects, emphasized manual textual analysis

• Towards a Comprehensive Insight on the Thematic Organization of the Tor
Hidden Services – Spitters, et al.

• Developed another Tor data mining tool, implemented alternative searching strategies.

• Emphasized extensive textual analysis on resulting data.

Introduction
Methodology
Results
Conclusions

Presenter
Presentation Notes
There were three main papers that I read for background information on Tor and descriptions of similar projects to the one I worked on.

In Cryptopolitik and the Darknet, the authors describe the societal implications of increased use of encryption before transitioning to discussing the Tor network, it’s use, and the content available on the platform. Moore and rid developed web crawlers themselves to scan the Tor network, then classified the results.

In the Tor Dark Net, the authors operated multiple types of projects, but collected less data. They manually categorized their data instead of doing it automatically.

Finally, in the last paper, the authors briefly describe how Tor functions, how the network is organized, and their data collection tools. This paper emphasizes more the automatic categorization techniques they implemented on their resulting data.

Unfortunately, none of these sources released their code for anyone to use, so it’s anyone’s guess about if they wrote quality code, how fast it ran, how easy it was to use, how safe it was, and other factors.

SOFTWARE DEVELOPMENT STRATEGIES

• Adhered to Spiral Model of Software
Development

• Frequent code reviews

• Lots of testing, debugging, and
documentation

• Frequent meetings with mentors

Introduction
Methodology
Results
Conclusions

Presenter
Presentation Notes
As I worked on my project, I kept certain habits to guarantee that I would create quality work while making effective progress without the project becoming overwhelming.

Throughout development, I followed the Spiral Model for software development, a looping process that consists of Planning, Risk Analysis, Development & Testing, and Evaluation. This ensured that every stage of the project was planned ahead of time and tested, before moving onto the next stage. This way, I’m not pressured to code the entire project at once, then test it all at once, which wouldn’t be effective development.

Every single line of code I wrote was peer-reviewed and carefully checked, just like reviewing any paper line-by-line. I would estimate I spent about a quarter of my time writing new code, with the rest spent testing and debugging. This doesn’t mean I was always writing buggy code, but that I was making sure everything worked as expected. It’s a serious issue if somebody in the future wants to use my software but can’t because of crashes, for example.

I documented almost everything to make sure anyone else who looks at the project can understand each part. That future person could be me, so besides helping other people, I can help myself avoid the “where was I?” question. Documentation ensures that information is available to answer questions, troubleshoot, and help customize the software.

I also met often with my mentors within the COAR group, telling them about the project’s progress. I would prioritize their suggestions when I went back to developing.

THE TOR WEB CRAWLER – CRAWLER BASICS

• Written entirely in Python

• Crawler needs an initial list of Hidden
Service URLs

• Visit hidden service, download content,
click links, repeat

Introduction
Methodology
Results
Conclusions

http://cb3rob5vwac2dtyc.onion/
http://cb3robuo3hobodw6.onion/
http://cbehcy6letx6vnao.onion/
http://cbk4iqyencfqzmyu.onion/

URLs

Visit
HS

Download
Web Page

Visit
Links

Presenter
Presentation Notes
All the code for this project was written in Python, my favorite programming language. Here’s how the crawler works on a basic level: as it starts, it checks for a list of hidden service web addresses that it can start accessing. It attempts to visit each in order, downloading the web page if it receives a response, and skipping hidden services that return 404 or other errors.

Once a page has been downloaded, all the links on that page are clicked, so to speak, by the web crawler and those web pages are also visited. This cycle of visiting a page, downloading, and clicking links loops until all the pages on the hidden service have been downloaded or the crawler is told to stop. Then the crawler moves onto the next address in the initial list. This cycle continues until the list has been exhausted.

THE TOR WEB CRAWLER – DEALING WITH DATA

• Dataset contains:
• Downloaded HTML

• Links to other hidden services

• Avoids downloading too much data
• Page-count limits

• Depth limits

Introduction
Methodology
Results
Conclusions

MyHiddenWebPage:
- homepage.html
- pictures.html
- contact.html
- social.html
- links.txt

URL: https://www.andrews.edu/services/honors/research/

Depth: 0 1 2

Dataset Sample

Presenter
Presentation Notes
The dataset from the crawler is organized by hidden service address, with subsections for each page. For example, if the web crawler accessed some of the most popular websites in sequence, it might create a folder for Google and a folder for Youtube. Into the Google folder the crawler would place the Google home page, Google+, Google images, and others. The Youtube folder would likewise only contain web pages from Youtube.

I should clarify exactly what the crawler is downloading: it’s the technical language that is seen when you click “View Source” on a web page. None of the pictures, colors, or animations on a hidden service are downloaded, only the technical language.

Meanwhile, for the purposes of depicting links to other hidden services, each link that the crawler clicks on is noted in a separate file.

The Tor network is vast, and many hidden services have too many pages. To save time and hard drive space, the crawler limits itself to a maximum of twenty pages from every hidden service. This prevents overrepresenting huge hidden services in a data set. Secondly, a concept called depth limits was implemented. When I type “andrews.edu” into my browser, that page has a depth of zero. If I then mouse over “Academics” and click on “Honors”. That page has a depth of one since I clicked one link to get there. If I then click “research”, I’m at a depth of two. Limiting the crawler to a depth of two for example ensures that the crawler doesn’t go on a wild-goose chase into the depths of some hidden service.

THE TOR WEB CRAWLER - SECURITY

• Tor integration also protects crawler

• User-agent rotations
• Pretend to be a human!

• Avoid software that blocks bots

• Keyword blacklists
• Prevent downloading unwanted content

• Avoid undesirable websites in the future

Introduction
Methodology
Results
Conclusions

AVOID:
- Classify
- Classified
- Military Secret
- Redacted

Presenter
Presentation Notes
I recognized, partially because of Tor and partially because my mentors were cyber security experts, that security was a top priority.

Thankfully, just the very fact that the web crawler connects to the internet through Tor means that the crawler has those same benefits that were mentioned earlier, that being encryption of data, and prevention of tracking and identification.

Just in case some hidden service may be hostile towards web crawlers, I added something called user-agent rotation. When you access a website, part of the data you send that identifies you is called your user agent. It tells the website what device and web browser you’re using. Normal answers to this question like iPhone and Safari, imply you’re a human. But the crawler is definitely not a human, and we considered that some hidden services might not like that. To get around this, I found combinations of devices and browsers that most Tor users have, and make the web crawler choose a different one at random every time it connects to a website.

To prevent the web crawler from downloading undesirable content, classified information being the biggest concern of ours, I implemented a keyword checker that scans downloaded content for keywords. If any are found, that content is immediately deleted, further requests to that hidden service are cancelled, and it’s address is added to a blacklist.

THE CONNECTIVITY GRAPH PROGRAM

• Written in Python with the Networkx
library

• Takes crawler datasets as input

• For each crawled hidden service:
• Insert the URL as a node

• Check the links file, insert edges
between two matching nodes

Introduction
Methodology
Results
Conclusions

hiddensite
- Links

- helloworld.onion
- otherplace.onion

otherplace
- Links

- buystuff.onion

Folders

HS

OP

HS

OP

Nodes Edges

Presenter
Presentation Notes
The Connectivity graph program accepts datasets from the crawler in order to generate graphs that depict links between Hidden Services.

The name of each successfully crawled hidden service is inserted into a connected graph as a node. Then, the links to other hidden services are checked. If there is a match between two nodes, an edge is inserted into the graph. This process is repeated for every successfully crawled hidden service within a data set, and the resulting graph can be analyzed.

For example, if a website has lots of links coming out of it or into it, it can be assumed to be social media or some platform where people share content. If a website mostly has links going into it and only a few coming out of it, it might be a website for a framework allowing users to create and customize blogs or their own pages.

TOR WEB CRAWLER PERFORMANCE

• Most extensive session based on
starting list of ~10,000 URLs

• Over the course of four hours:
• ~1,200 hidden services successfully

crawled

• ~1.5 GB total HTML downloaded

• Acceptable results, as roughly 85% of
hidden services are short-lived (Owen
& Savage)

Introduction
Methodology
Results
Conclusions

10,000 Addresses

1,200 Crawled
Hidden Services

1.5 GB Data

Presenter
Presentation Notes
Here are some of the general results for the two programs.

In our most rigorous testing of the Crawler, we supplied it an initial list of about ten thousand known hidden service addresses. When it was set free, over about four hours it successfully downloaded content from about one thousand two hundred hidden services, collecting one and a half gigabytes of pure textual content from Tor.

This may not seem like a success in comparison to the starting list of ten thousand, but the Tor network is much more dynamic than the normal internet. Most websites don’t stay up very long, according to Owen and Savage over 85% don’t last much more than a couple of months. This being the case, we were pleased with our results.

It appears at first that we were only able to download data from about 12% of the starting list, but this doesn’t account for newly discovered websites that weren’t on the initial list but were linked to somewhere. Unfortunately, I’m not able to offer statistics on how many new hidden services we discovered, and I’ll explain why shortly.

CONNECTIVITY GRAPH PROGRAM PERFORMANCE

• Successfully reads crawler output
files

• Generates graphs in multiple formats
• These can be viewed by external

applications

• Can be made more legible by
applying graph-drawing algorithms

Introduction
Methodology
Results
Conclusions

1.5 GB Data

Presenter
Presentation Notes
I was happy to see that the connectivity graph program performed well. It successfully reads a dataset created by the Tor crawler and generates connected graphs depicting links between the crawled hidden services. The graphs can be viewed by external applications, but I noticed at first they’re rather chaotic looking. This is because although the program can create the graphs correctly, it doesn’t predetermine how they should be arranged. Thankfully, I was able to fix this by applying what are called force-directed graph drawing algorithms using another application. What these do is push related connected nodes into groups with each other, which make the output graphs much more legible.

Introduction
Methodology
Results
Conclusions

Presenter
Presentation Notes
This is an example of a connected graph based on a test crawl on non-Tor websites, made legible through a graph-drawing algorithm from a program called Gephi. The darkest node in the center is the single website that the crawler started from. From there, the crawler visited goodreads.com and scrapinghub.com, and from there it explored all these other web pages. In this case, the crawler was limited to a maximum of three sites away from the starting site, otherwise this graph would be much larger and more complicated.

PROJECT DIFFICULTIES

• Crawler accidentally downloaded
stolen personally identifiable
information (PII)

• Security concern

• Hard drives confiscated and
destroyed!

Introduction
Methodology
Results
Conclusions

Presenter
Presentation Notes
So you may have noticed in the results earlier that I was very general about statistics describing the web crawler’s performance. This is because one day, while we were inspecting a dataset, we noticed within the data some problematic information had been downloaded. Apparently, someone put up a hidden service and published military names, numbers email addresses, and even social security numbers on it, and the crawler found that website and downloaded all this information to our computers.

We went and spoke with our mentor for advice, who contacted his boss for advice, who contacted her boss, who contacted the classified information and security specialist for the research division. Unfortunately, just deleting what we found wasn’t good enough, as the information could still be recovered. The security specialist had to confiscate and destroy our hard drives, which contained all of our data. Thankfully the code was backed up, but we had to satisfy ourselves with completing software development without performing specific data analysis.

CONCLUSIONS

• The Tor Web Crawler was able to
effectively traverse the Tor network
and download hidden service content
with no difficulties

• The Connectivity Graph program was
successful at depicting links between
hidden services

Introduction
Methodology
Results
Conclusions

Presenter
Presentation Notes
During my work on the Darknet Weathermap project at Argonne National Laboratory I was successful at developing software to download content from the Tor network’s hidden services, then depict the links between them. Both pieces of software have the capability to be used by law enforcement agencies to plan anti-cyber-crime operations or by other researchers to perform content analysis on the Tor network without needing to develop other solutions. This software could potentially be used to discover websites like Silk Road ahead of time, and enable investigations before such websites become popular.

If I have the opportunity to work on this project in the future, I’d like to develop methods of saving progress so a crawling session can be paused and resumed later. I would also want to develop user interfaces so that the software can be used with buttons and windows. A longer term goal would be to develop automatic categorization techniques, or a window that renders a connected graph at the same time the crawler is operating, so users would be able to watch the crawler’s paths through the Tor network in real time.

ACKNOWLEDGEMENTS

Introduction
Methodology
Results
Conclusions

Josh Lyle – Argonne National Laboratory

Dr. Rodney L. Summerscales – Department of Engineering & Computer Science

Presenter
Presentation Notes
I would like to thank Josh Lyle, my supervisor at Argonne for mentoring and guiding me on this project and helping me learn the problem solving techniques I would need to do good work. And of course, I’d like to thank Dr. Summerscales for guiding me through the Honors Thesis process and helping me organize my work at Argonne into an Honors thesis here at Andrews.

SOURCE CODE

https://github.com/Argonne-National-Laboratory/torantula

Introduction
Methodology
Results
Conclusions

Presenter
Presentation Notes
If anyone here is interested in the source code for my project, it is available online to read or download and modify as you please. The project is called Torantula, and can be found on the Argonne National Laboratory Github page.

BIBLIOGRAPHY

• Moore, Daniel, and Thomas Rid. “Cryptopolitik and the Darknet.” Survival, vol. 58,
no. 1, Feb. 2016, pp. 7–38., doi:10.1080/00396338.2016.1142085.

• Owen, Gareth, and Nick Savage. “The Tor Dark Net.” Global Commission on Internet
Governance, ser. 20, 30 Sept. 2015. 20, CIGI publications,
www.cigionline.org/publications/tor-dark-net.

• Spitters, Martijn, et al. “Towards a Comprehensive Insight into the Thematic
Organization of the Tor Hidden Services.” 2014 IEEE Joint Intelligence and Security
Informatics Conference, 2014, doi:10.1109/jisic.2014.40.

Introduction
Methodology
Results
Conclusions

QUESTIONS?

Introduction
Methodology
Results
Conclusions

	Crawling Tor’s Hidden services and depicting their interconnectivity
	The Fall of (the) silk Road
	The Tor Network
	What are hidden services?
	How Does the Tor network function?
	Envelope �Demo
	The darknet weathermap project
	What is a web crawler?
	What are connected graphs?
	Previous work
	Software Development Strategies
	The Tor web crawler – Crawler basics
	The Tor web crawler – dealing with data
	The Tor web Crawler - Security
	The connectivity graph program
	Tor web crawler performance
	Connectivity graph program performance
	Slide Number 18
	Project difficulties
	conclusions
	Acknowledgements
	Source code
	bibliography
	Questions?

