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Abstract:

Recent success in sequence generation has been seen in the problem of
Polyphonic Music Generation. This study analyzes the effectiveness of two
embedding strategies: notes as a string and notes as objects using a Long-Short
Term Memory Recurrent Neural Network (Hochreiter 1997) for music auto-
completion when trained on the corpus of Erik Satie. This project seeks to
introduce Music Autocomplete as a new problem, while adding to the body of
knowledge on how Neural Networks process sequential data and how different
data embeddings improve performance. This project also adds to the subfield of
the intersection of artistry and Artificial Intelligence.

Figure 1: LSTM Model Summary

Model: "sequential 1"

Layer (type) Output Shape Param #
letm 3 (LSTM)  (Nome, 100, 256) 264192
dropout 3 (Dropout) (None, 100, 256) 0

lstm 4 (LSTM) (None, 100, 512) 1574912
dropout 4 (Dropout) (None, 100, 512) 0

l1stm 5 (LSTM) (None, 256) 787456
dense 2 (Dense) (None, 256) 65792
dropout 5 (Dropout) (None, 256) 0

dense 3 (Dense) (None, 19) 4883
activation 1 (Activation) (None, 19) 0

Total params: 2,697,235
Trainable params: 2, 697 235
Non-trainable params:

Methodology

Select Artist Erik Satie was the artist of choice for this project for his well known
piano works and recognizable style.

2.  Gather Data: We identified 157 piano compositions and were able to locate the
MIDI files for 76 of them (roughly 48%). This includes 9 “major works.”

3. Prepare Data: We used the Music21 python library for MIDI file data mining. Data
were split into training and testing sets, and then using the Music21 modules, the
songs were translated into both data representations. Once in the respective
representation, we used a sequence of 100 characters for the string model and 70
notes for the object approach. Then the data were prepared for the model.

4.  Build Model: The simple LSTM-RNN model used consists of three LSTM layers
with dropout 0.3 and 512, 256, and 256 nodes per layer respectively and two dense
layers one with 256 nodes and the other with node count equal to the length of the
output vector.

5. Train the Model: Models were tracked based on their accuracy during training on
the validation split set. We used a timeseries split with n=5 to avoid overfitting. Best
weights based on validation loss were saved using early stopping and checkpoints.

6. Evaluate the Model: Using the test data split in step 3, we predict the top 5
suggested next notes in the sequences and analyze the results qualitatively.

Data:

We selected Erik Satie and the MIDI file format for this research due to the
extensive libraries of classical MIDI files. We identified 157 piano compositions and
were able to locate the MIDI files for 76 of them (roughly 48% of total works). This
includes 9 of 10 “major works.” Many works have multiple movements, which were
combined into the same file in cases of movements with short total note sequences.
Due to this, our file count is 49. We then randomly split the dataset into 40 file training
and 9 file testing set. We decided that given the nature of this problem and the
available data, that restricting music from particular time periods would not be
necessary. Further, we only wish to predict accurately what note(s) were played at the
next timestep, so no attention was given towards melodies and dynamics.

Figure 1: Data Flow for Respective Embeddings
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Results and Analysis:

During the training process for the character-based LSTM we saw overfitting on
the validation data at around 8 epochs during each fold in the time series split. So the
model was trained for 8 iterations on the entire training dataset. The character LSTM
model had the most success 1n autocompletion.

Table 1: Average Loss and Accuracy for Character Model

Character Based LSTM Average Accuracy

Trial A Trial B Trial C
train_acc 47.88% 51.26% 44.61%
val_acc 36.94% 37.37% 37.00%

Works Cited:

The LSTM framework is much better suited to the character approach than to the object
approach. Over three independent trials on the nine test files, we saw a 16.7% success rate.
Success rate was determined by whether or not the true note occurred in the top five
suggestions list from the data. Table 1 shows a sample output. Further, while if let train for
a while, the training set could reach 99% accuracy with <5% loss, however, any validation
accuracy could not rise above around 45% betore overtitting.

The results from the object-based LSTM were not reportable, as the model was unable
to train on the data.

Table 2: Model Output Example

satgno01.mid
F2 FACAC5G#3 E-5 D5 FACAC5G#3 B4F2 FACAG#3 C5 B4 FACAGH3 F2 FACAC5G#3 E-5 D5
FACAC5G#3 E5 F5F2 FACAG

['#3','3"','4B3 ", '5A3 ", '6A3 ‘]

success: ‘#3’

Enfantillages_Pittoresques2.mid

D5F5A4 C5 F5A5B4 C5 E5G5A4 C5 F5A5B4 C5 D5F5A4 C5 F5A5B4 C5 E5G5A4 C5 F5A5B4 C5
E5G4B4 D5 E5F4A4 D5

['A4E4 ', 'BAE4 ', 'D5G4A4 ', 'CAE4 ', 'F5G4B4 ‘]

correct note/chord is: ‘E5G4B4’

Discussion & Conclusion:

The original intent of this project was to implement two embedding strategies on one
network so that performance could be compared. However, in the end this reinforced the
truth that there are models better suited to certain embedding strategies, and while the best
embedding from a performance standpoint for a simple LSTM model is the character-based
model, there 1s much to discover in lieu of architecture for the object approach.

It is worth noting that the large vocabulary of the object based model became a huge
detriment due to the imbalanced appearance of the space character when dividing timesteps.
This made it very hard for the model to train even when class weights were balanced. Thus a
true comparison between embeddings was not fair, as a different model architecture would
likely improve performance. Better yet, a data representation that would take a vector at each
timestep and then have an output vector of many 1s would show the relationship between
notes more accurately. This however fits into the category of multiple output classes which
has seen better success with Restricted Boltzmann Machines (RBMs) rather than LSTMs.
While the results for the object approach were insignificant, further research is warranted into
the application of RBMs and RBM-RNNs to this problem. There have also been successful
models in the polyphonic music generation problem such as the Bi-Axial LSTM (Johnson
2017), so an evaluation of how well the Bi-Axial LSTM can autocomplete an artist’s work
would also be interesting.

While we saw limited success in our character representation, there is much more to be
gained by experiments with cutting edge architecture. Other key limitations of this study are
that the method for determining success 1s tough to quantify. Further, music was selected as 1t
was available. More research could be done with better access to MIDI files of Erik Satie, or
a comprehensive list of some other artist. While this study makes an effort to express how
well the model is doing at autocompleting, it is somewhat unfair to say whether or not it has
done well. One of the takeaways from this research is that further interdisciplinary study 1s
warranted to develop a good metric for music autocomplete analysis, given that the model
could suggest a note or a chord that 1s technically similar to the true chord, though it is not
the exact notes played at that time. Once a good evaluation system 1s developed, then more
results can be compared across architectures and embeddings.
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