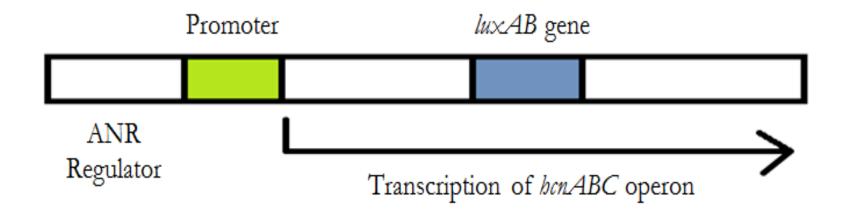
hcnABC operon transcription of Pseudomonas putida under varying iron and oxygen concentrations and culture age

Christine Lee


Research Advisor: Dr. Robert Zdor

Andrews University Biology Department

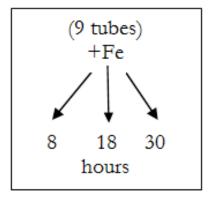
- Pseudomonas putida
 - Plant-associated bacterium
 - Produces hydrogen cyanide (HCN)
 - What is HCN?
- Significance
 - HCN prevents tobacco black root
 - Suppresses growth of Velvetleaf (weed species)
 - Agricultural implications

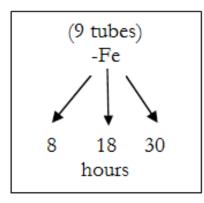
Mechanism of HCN production

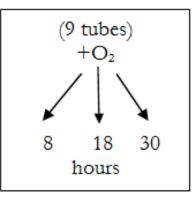
Transcription of hcnABC operon \rightarrow HCN synthase \rightarrow HCN production

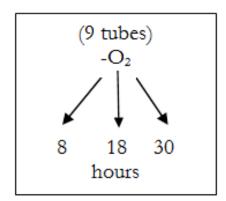
- HCN is lethal why are we not affected?
- Regulation of HCN production at hcnABC operon
- 2 significant regulators:
 - Anaerobic regulator (ANR)
 - Low oxygen levels and/or high iron levels →
 Activation of ANR → Transcription of hcnABC
 operon → HCN production
 - Global activator (GacA)
 - High cell densitiy \rightarrow Activation of GacA \rightarrow Transcription of *bcnABC* operon \rightarrow HCN production

- Previous Research
 - Blumer and Haas (2000a)
 - Iron availability and minimal aeration activates ANR → increases HCN production in *P. fluorescens* CHA0
 - Pessi and Haas (2001)
 - Exponential bacterial growth activates GacA → increases HCN production in *P. aeruginosa* PAO1

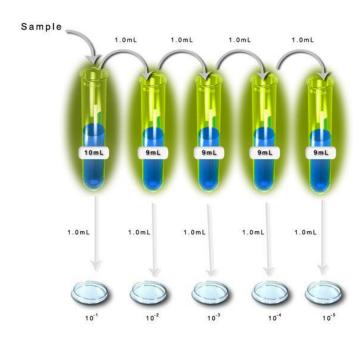

- Previous Research
 - Myrna Biswas (2010)
 - Cultures with iron and minimal aeration have greater HCN production in *P. putida*
 - Results were variable
 - Isaac Kim (2011)
 - Iron is necessary for HCN production in *P. putida*
 - Results not statistically significant

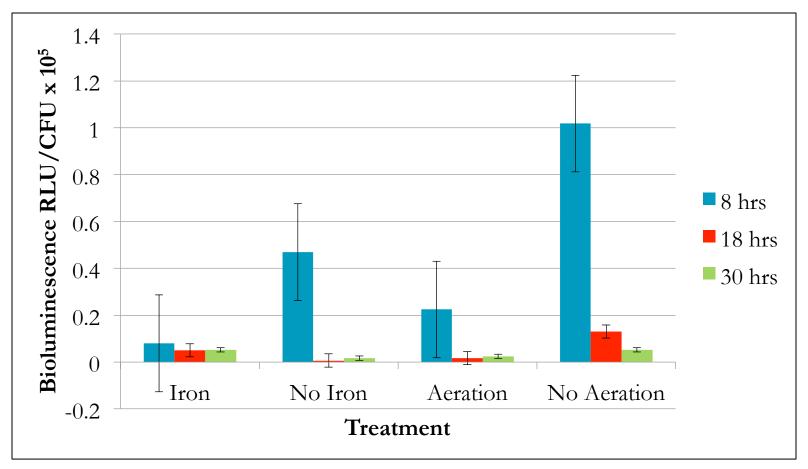

- Current research
 - Varying iron and oxygen levels
 - Age of bacteria
 - Modified hen ABC operon




- Culture conditions and enumeration
 - Strain of *P. putida* ATH2-1RI/9 with lux-modified *hcnABC* operon
 - Shaking water bath for 24 hours
 - Centrifugation and resuspension in 0.5 mL water → inoculum

- Culture conditions and enumeration (continued)
 - Set-up of cultures

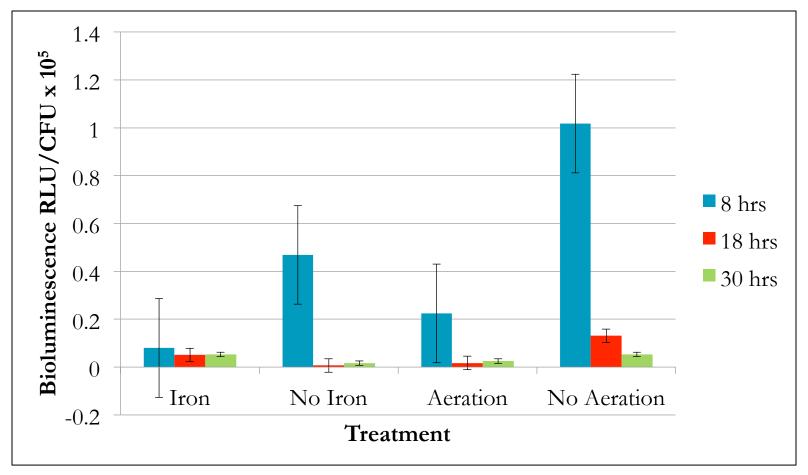



- 10 mL MMC media per test tube
- 10 μ L of inoculum per test tube
- Iron solution: 0.0003244 g FeCl₃/100 mL MMC media

- Culture conditions and enumeration (continued)
 - Bacterial populations determined by dilutions and spread plating

- Luminometry
 - 0.5 mL of culture added to luminometer tube
 - 10 μ L added of 1% decyl alcohol in 100% alcohol
 - Spreadsheet Interface Software 2 minutes
- Spectrophotometry
 - Absorbance at 600 nm

Results

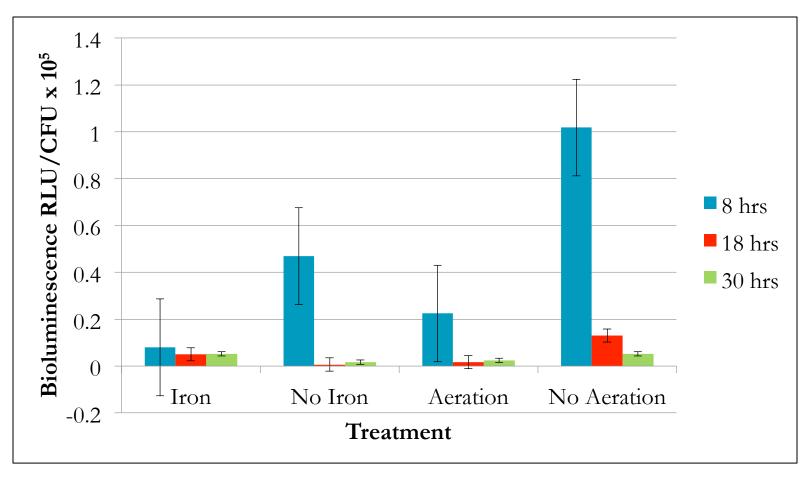


Not statistically significant: $(F_{(3,2)} = 0.561, p = 0.05)$

Discussion

- Prediction: Presence of iron increases HCN production
 - Laville et al (1998): Iron availability → Activates ANR → Turns on transcription of *bcnABC* operon → Increased levels of HCN production
 - P. fluorescens CHA0
 - Results compared to previous findings
 - Myrna Biswas (2010)

Results

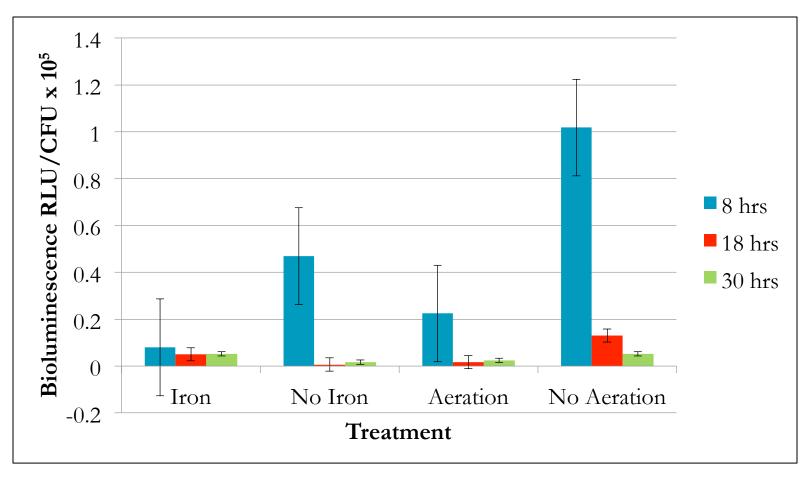


Not statistically significant: $(F_{(3,2)} = 0.561, p = 0.05)$

Discussion

- Prediction: Low levels of oxygen, high levels of iron increase HCN production
 - Blumer and Haas (2000a): Low oxygen levels, high levels of iron → Activates ANR → Turns on transcription of *bcnABC* operon → Increased levels of HCN production
 - P. fluorescens CHA0
 - Results compared to previous findings
 - Myrna Biswas (2010)

Results



Not statistically significant: $(F_{(3,2)} = 0.561, p = 0.05)$

Discussion

- Prediction: Exponential cell growth increases HCN production
 - Pessi and Haas (2001): High bacterial populations →
 Activates GacA → Turns on transcription of *bcnABC* operon → Increased levels of HCN production
 - P. aeruginosa PAO1
- Results compared to previous findings
 - Pessi and Haas (2000)

Results

Not statistically significant: $(F_{(3,2)} = 0.561, p = 0.05)$

Further Study

- Variability in iron and no iron treatments
 - Myrna Biswas (2010)
 - Current research
- At what population of bacteria does GacA turn off transcription and lead to a decrease in HCN production?

Bibliography

- Biswas, Myrna B. hcnABC gene expression in the soil bacterium Pseudomonas putida ATH2-1RI/9 under various culture and rhizosphere conditions. Master's Thesis. 2010.
- Blumer, C., and Haas, D. Iron regulation of the *hcnABC* genes encoding hydrogen cyanide synthase depends on the anaerobic regulator ANR rather than on the global activator GacA in *Pseudomonas fluorescens* CHA0. *Microbiology.* **146**, 2417-2424 (2000).
- Blumer, C., and Haas, D. Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. *Arch Microbiol.* **173**, 170-177 (2000).
- Kim, Isaac. hen ABC operon expression in and bacterial populations of Pseudomonas putida under varying iron concentrations in sand and soil. Senior Honors Thesis (2011).
- Laville, J., Blumer, C., Schroetter, C. V., Gaia, V., Défago, G., Keel, C., and Haas, D. Characterization of the *hcnABC* gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent *Pseudomonas fluorescens* CHA0. *Journal of Bacteriology.* **180**, 3187-3196 (1998).
- Pessi, G., and Haas, D. Transcriptional control of the hydrogen cyanide biosynthetic genes *hcnABC* by the anaerobic regulator ANR and the quorum-sensing regulators LasR and Rh1R in *Pseudomonas aeruginosa*. *Journal of Bacteriology*. **182**, 6940-6949 (2000).
- Pessi, G., and Haas, D. Dual control of hydrogen cyanide biosynthesis by the global activator GacA in *Pseudomonas aeruginosa* PAO1. FEMS Microbiology Letters. **200**, 73-78 (2001).

Acknowledgments

- Dr. Robert Zdor Advisor
- Andrews University Biology Department