Beta Stability: Is It Recession Proof? Daniel Moskala Advisor: Dr. Alan Kirkpatrick

What is Beta?

- Beta measures the risk associated with a security
- Relative statistic
- Modeling
- Formal Definition: The covariance of a portfolio and the market relative to the variance of the market.

What is Beta?

• Mathematical Representation:

$$\mathcal{B} = \frac{Cov_{pm}}{\sigma_m^2}$$

• Where the components can be expressed as:

$$Cov_{pm} = \frac{\sum_{t=1}^{n} \left(R_{pt} - \bar{R}_{p} \right) \left(R_{mt} - \bar{R}_{m} \right)}{n-1} \text{ and } \sigma_{m}^{2} = \frac{\sum_{t=1}^{n} \left(R_{mt} - \bar{R}_{m} \right)^{2}}{n-1}$$

What is Beta?

- Example:
- Portfolio Beta = 2
- 10% market increase **20%** portfolio increase.
- 10% market decrease _____ 20% portfolio decrease.
- What if Beta = 1 or 0.5?

Project Goal

• To determine the effect that the state of the economy has on beta stability of a portfolio.

Dow Jones Industrial Average

-DJIA

Methodology

- Isolate two time periods
 - Recessionary
 - National Bureau of Economic Research
 - Expansionary

Dow Jones Industrial Average

Time

-DJIA

Dow Jones Industrial Average

Time

-DJIA

Methodology

- Create three portfolios:
 - 1. Diversified
 - Variety of sectors and industries
 - B = 1
 - 2. Leisure
 - Cruise, resort, casino
 - B > 1
 - 3. Necessities
 - Staple foods, supermarkets, utilities
 - B < 1

Methodology

 Calculate betas throughout the normal economic growth period and the recessionary period.

$$\beta = \frac{Cov_{pm}}{\sigma_m^2}$$

- Calculate the standard deviation of the betas in each time period.
- Test to see if there is a statistically significant change in the standard deviation.
 - F-test at 5% significance level

Diversified Beta

Leisure Beta

Necessity Beta

Diversified, Leisure, and Necessity Beta

	Normal Economic Growth			Recession			F-Test	T-test
Portfolio Type	Beta Mean	Standard Deviation	Variance	Beta Mean	Standard Deviation	Variance	P-Value	P-Value
Diversified	0.88	0.0472	0.0022	0.94	0.0430	0.0018	0.3870	0.0050
Leisure	1.11	0.2793	0.0780	1.17	0.1741	0.0303	0.0760	0.2570
Necessities	0.71	0.1100	0.0121	0.66	0.0753	0.0057	0.1237	0.1063

Diversified, Leisure, and Necessity Beta

Conclusions

- None of the portfolios had statistically significant change in the standard deviation during the recession.
- The recession did not effect beta stability at the 5% significance level.
- High volatility regardless of the state of the economy.

$$\beta = \frac{Cov_{pm}}{\sigma_m^2}$$

- Beta stability assumption does not consistently hold.
- Financial practitioners need to calculate high-risk portfolio betas frequently.
- Two characteristics identified for beta stability:
 - Diversification
 - Low average beta

Diversified, Leisure, and Necessities Beta

- Further Study:
 - Find more determinants of beta stability
 - Show statistical significance
- Keep track of your portfolio beta!

Bibliography

- Baesel, Jerome B. "On the Assessment of Risk: Some Further Considerations." *The Journal of Finance* 29.5 (1974): 1491-1494.Web.
- Blume, Marshall E. "On the Assessment of Risk" The Journal of Finance 26.1 (1971): 1-10. Web.
- Chan, Louis K. C. and Josef Lakonishok. "Robust Measurement of Beta Risk." *The Journal of Financial and Quantitative Analysis* 27.2 (1992): 265-282. Web.
- Ghysels, Eric. "On Stable Factor Structures in the Pricing of Risk: Do Time-Varying Betas Help or Hurt?" *The Journal of Finance* 53.2 (1998): 549-573. Web.
- Gordon, Alexander J. and Norman L. Chervany."On the Estimation and Stability of Beta." The Journal of Financial and Quantitative Analysis 15.1 (1980): 123-137. Web.
- Reilly, Frank K. And Keith C. Brown. *Investment Analysis and Portfolio Management*. US: South-Western Cengage Learning, 2009.