Goal • Solve one-step equations using algebra.

Your Notes

VOCABULARY

Inverse operations Two operations that undo each other, such as addition and subtraction

Equivalent equations Equations that have the same solution(s)

ADDITION PROPERTY OF EQUALITY

Words Adding the same number to each side of an

equation produces an equivalent equation .

Algebra If x - a = b, then x - a + a = b + aor x = b + a.

SUBTRACTION PROPERTY OF EQUALITY

Words Subtracting the same number from each side

of an equation produces an equivalent

equation .

Algebra If x + a = b, then x + a - a = b - a

or x = b - a.

Your Notes

Example 1 Solve an equation using subtraction

Solve y + 3 = 10.

Solution

$$y + 3 = 10$$

$$y + 3 - 3 = 10 - 3$$

Write original equation.

y + 3 - 3 = 10 - 3 Use subtraction property of equality: Subtract 3 from each side.

Simplify.

The solution is 7.

CHECK

$$y + 3 = 10$$

$$\frac{7}{10} + 3 \stackrel{?}{=} 10$$

Write original equation.

Substitute 7 for y.

Solution checks.

Remember to check your solution in the original equation for accuracy.

Example 2 Solve an equation using addition

Solve t - 9 = 11.

Solution

$$t - 9 = 11$$

t - 9 = 11 Write original equation.

$$t - 9 + 9 = 11 + 9$$

Use addition property of equality: Add 9 to each side.

$$t = 20$$

Simplify.

The solution is 20.

CHECK

$$t - 9 = 11$$

Write original equation.

Substitute 20 for t.

Solution checks.

Your Notes

Checkpoint Solve each equation. Check your solution.

3.
$$-3 = x + 2$$

 $x = -5$

4. $y - 4 = -6$
 $y = -2$

MULTIPLICATION PROPERTY OF EQUALITY

Words Multiplying each side of an equation by the same non-zero number produces an equivalent equation .

Algebra If $\frac{x}{a} = b$ and $a \neq 0$, then $a \cdot \frac{x}{a} = \underline{a} \cdot \underline{b}$ or x = ab.

DIVISION PROPERTY OF EQUALITY

Words Dividing each side of an equation by the same non-zero number produces an equivalent

equation .

Algebra If ax = b, and $a \ne 0$, then $\frac{ax}{a} = \frac{b}{a}$ or $x = \frac{b}{a}$

Your Notes

Solve an equation using division Example 3

Solve 8x = 56.

The division property of equality can be used to solve equations involving multiplication.

Solution

$$8x = 56$$

Write original equation.

$$\frac{8x}{8} = \frac{56}{8}$$

Use division property of equality: Divide each side by 8.

The solution is 7.

x = 7

CHECK

$$8x = 56$$

Write original equation.

 $8(7) \stackrel{?}{=} 56$ Substitute 7 for x.

Solution checks.

Example 4

Solve an equation using multiplication

Solve
$$\frac{a}{5} = 12$$
.

The multiplication property of equality can be used to solve equations involving division.

Solution

$$\frac{a}{5} = 12$$

Write original equation.

$$\underline{5} \cdot \frac{a}{5} = \underline{5} \cdot 12$$

Use multiplication property of equality: Multiply each side by 5.

$$a = 60$$

Simplify.

The solution is 60.

CHECK

$$\frac{a}{5} = 12$$

Write original equation.

Substitute 60 for a.

Solution checks.

Solve
$$\frac{3}{5}t = 6$$
.

Solution

The coefficient of t is $\frac{3}{5}$. The reciprocal of $\frac{3}{5}$ is $\frac{5}{3}$.

$$\frac{3}{5}t = 6$$
 Write original equation.

$$\frac{\left(\frac{5}{3}\right)}{\frac{5}{3}} \cdot \frac{3}{5}t = \frac{\left(\frac{5}{3}\right)}{\frac{5}{3}} \cdot 6 \quad \text{Multiply each side by the reciprocal } \frac{5}{3}.$$

$$t = 10$$
 Simplify.

The solution is 10.

CHECK

$$\frac{3}{5}t = 6$$
 Write original equation.

$$\frac{3}{5}t = 6$$
 Write original equation.
$$\frac{3}{5}(\underline{10}) \stackrel{?}{=} 6$$
 Substitute $\underline{10}$ for t .
$$\underline{6} = 6 \checkmark$$
 Solution checks.

Checkpoint Solve each equation. Check your solution.

5.
$$3x = 39$$

 $x = 13$
6. $\frac{b}{4} = 13$
 $b = 52$

Homework

7.
$$-24 = 4x$$

 $x = -6$

8. $-\frac{3}{8}m = 21$
 $m = -56$