3.2 Solve Two-Step Equations

Goal • Solve two-step equations.

Your Notes

IDENTIFYING OPERATIONS

Identify the operations involved in the equation 3x + 7 = 19.

Operations performed on x	Operations to isolate x
1. Multiply by 3.	1. Subtract 7
2. Add	2. Divide by 3.

When solving a two-step equation, apply the inverse operations in the reverse order of the order of operations.

Example 1 Solve a two-step equation

Solve
$$3x + 7 = 19$$
.

Solution

$$3x + 7 = 19$$
 Write original equation.

$$3x + 7 - _{7} = 19 - _{7}$$
 Subtract _7 from each

$$3x = 12$$

$$\frac{3x}{3} = \frac{12}{3}$$

$$x = 4$$

side.

Simplify.

Divide each side by 3.

Simplify.

The solution is 4.

CHECK

$$3x + 7 = 19$$

$$3(\underline{4}) + 7 \stackrel{?}{=} 19$$
 $\underline{12} + 7 \stackrel{?}{=} 19$

Write original equation.

Substitute 4 for x.

Multiply 3 by 4.

Simplify. Solution checks.

Your Notes

Checkpoint Solve the two-step equation. Check your solution.

1.
$$\frac{r}{4} - 12 = -5$$
 $r = 28$

2.
$$7k - 14 = 42$$

Example 2 Solve a two-step equation by combining like terms

Solve 4a + 3a = 63.

Solution

$$4a + 3a = 63$$

$$\frac{7a}{7} = \frac{63}{7}$$

Divide each side by
$$\overline{7}$$
.

Write original equation.

Simplify.

The solution is 9.

CHECK

$$4a + 3a = 63$$

4a + 3a = 63 Write original equation.

 $4(\underline{9}) + 3(\underline{9}) \stackrel{?}{=} 63$ Substitute $\underline{9}$ for a. $\underline{36} + \underline{27} \stackrel{?}{=} 63$ Multiply 4 by $\underline{9}$ and 3 by $\underline{9}$.

$$_{63}$$
 = 63 \checkmark Add. Solution checks.

Checkpoint Solve the equation. Check your solution.

3.
$$5z + 4z = 36$$

$$z = 4$$

4.
$$5b - 2b = 9$$

$$b=3$$

Your Notes

Example 3 Find an input of a function

The output of a function is 2 more than 4 times the input. Find the input when the output is 14.

Solution

Step 1 Write an equation for the function. Let *x* be the input and *y* be the output.

$$y = 4x + 2$$
 y is 2 more than 4 times x.

Step 2 Solve the equation when y = 14.

$$y = \underline{4x + 2}$$
 Write original function.

 $14 = \underline{4x + 2}$ Substitute $\underline{14}$ for y .

 $14 - 2 = \underline{4x + 2 - 2}$ Subtract $\underline{2}$ from each side.

 $12 = \underline{4x}$ Simplify.

 $12 = \underline{4x}$ Divide each side by $\underline{4}$.

 $3 = x$ Simplify.

An input of 3 produces an output of 14.

CHECK

$$y = 4x + 2$$
 Write original function.

14 $\stackrel{?}{=} 4(3) + 2$ Substitute 14 for y and 3 for x.

14 $\stackrel{?}{=} 12 + 2$ Multiply 4 and 3.

14 = 14 \checkmark Simplify. Solution checks.

Checkpoint Solve the equation. Check your solution.

Homework

5. The output of a function is 3 less than 6 times the input. Find the input when the output is 15.

$$x = 3$$