Goal • Use function notation.

Your Notes

VOCABULARY

Function notation A way to name a function that is defined by an equation; f(x) = mx + b

Family of functions A group of functions with similar characteristics

Parent linear function The most basic linear function in a family of linear equations: f(x) = x

Example 1 Find an x-value

For the function f(x) = 3x + 1, find the value of x so that f(x) = 10.

Solution

$$f(x) = 3x + 1$$

Write original equation.

$$10 = 3x + 1$$

Substitute 10 for f(x).

$$3 = x$$

Solve for x.

When
$$x = 3$$
, $f(x) = 10$.

Checkpoint Complete the following exercises.

1. For
$$f(x) = 6x - 6$$
, find the value of x so that $f(x) = 24$.

$$x = 5$$

2. For
$$f(x) = 7x + 3$$
, find the value of x so that $f(x) = 17$.

$$x = 2$$

Text Messages A wireless communication provider estimates that the number of text messages m (in millions) sent over several years can be modeled by the function m = 120t + 95 where t represents the number of years since 2002. Graph the function and identify its domain and range.

t	m
0	95
1	215
2	335
3	455

The domain of the function is $t \ge 0$. From the graph or table, you can see that the range of the function is $m \geq 95$.

Checkpoint Complete the following exercise.

- **3.** Use the model from Example 2 to find the value of t so that m = 1055. Explain what the solution means in this situation.
 - 8; There will be over one billion text messages in 2010.

PARENT FUNCTION FOR LINEAR FUNCTIONS

- 1. The parent linear function is the most basic linear function.
- 2. f(x) = x is the form of the parent linear function.

Graph the function. Compare the graph with the graph of f(x) = x.

a.
$$p(x) = x - 4$$

b.
$$q(x) = -2x$$

Solution

a.

Because the graphs of p and f have the same slope, m = 1, the lines are parallel . Also, the *y*-intercept of the graph of p is 4 less than the y-intercept of the graph of f.

b.

Because the slope of the graph of q falls from left to right and the slope of the graph of f rises from left to right, the slope of q is negative. The y-intercept of both graphs is 0.

4. Graph $r(x) = \frac{1}{2}x$. Compare the graph with the graph of f(x) = x.

The slope of the graph of *r* is less than the slope of f. The y-intercept for both graphs is 0.

Your Notes

COMPARING GRAPHS OF LINEAR FUNCTIONS WITH THE GRAPH OF f(x) = x

$$g(x) = x + b$$

The graphs have the same slope .

The graphs have different *y*-intercepts

Graphs of this family are vertical translations of the graph of f(x) = x.

g(x) = mx where m > 0

The graphs have different (positive) slopes.

The graphs have the same *y*-intercept .

Graphs of this family are vertical stretches or shrinks of the graph of f(x) = x.

Homework

g(x) = mx where m < 0

The graphs have different (negative) slopes.

The graphs have the same *y*-intercept

Graphs of this family are vertical stretches or shrinks or reflections of the graph of f(x) = x.