54 Write Linear Equations in **Standard Form**

Goal • Write equations in standard form.

Your Notes

Example 1

Write equivalent equations in standard form

Write two equations in standard form that are equivalent to 4x + 2y = 12.

Solution

To write one equivalent equation, multiply each side by 0.5.

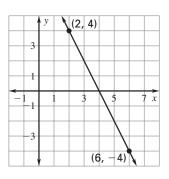
$$2x + y = 6$$

To write one equivalent equation, multiply each side

$$8x + 4y = 24$$

Checkpoint Complete the following exercises.

1. Write two equations in standard form that are equivalent to 6x - 4y = 6.


$$3x - 2y = 3$$
; $12x - 8y = 12$

2. Write two equations in standard form that are equivalent to -12x + 6y = -9.

$$-4x + 2y = -3$$
; $-24x + 12y = -18$

Example 2

Write an equation in standard form of the line shown.

Solution

Step 1 Calculate the slope.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{-4 - 4}{6 - 2}$$

$$= \frac{-8}{4}$$

Step 2 Write an equation in point-slope form. Use (2, 4).

$$y-y_1=m(x-x_1)$$
 Write point-slope form.
 $y-\underline{4}=\underline{-2}(x-\underline{2})$ Substitute $\underline{4}$ for y_1 , $\underline{-2}$ for m , and $\underline{2}$ for x_1 .

Step 3 Rewrite the equation in standard form.

$$y - \underline{4} = \underline{-2}x + \underline{4}$$
 Distributive property
 $y + \underline{2}x = \underline{8}$ Collect variable terms on one side, constants on the other.

All linear equations can be written in standard form, Ax + By = C.

Your Notes

Checkpoint Complete the following exercise.

3. Write an equation in standard form of the line through (3, -1) and (2, -4).

$$y - 3x = -10$$

Example 3

Write an equation of a line

Write an equation of the specified line.

- a. Line A
- **b.** Line B

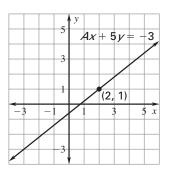
Solution

- **a.** The *x*-coordinate of the given point on Line A is 3. This means that all
 - points on the line have an

x-coordinate of 3. An equation of the line is x = 3.

 $-\dot{3}$

Line B


(-4, -6)

b. The y-coordinate of the given point on Line B is -6. This means that all points on the line have a y-coordinate of -6 . An equation of the line is

$$y = -6$$
.

Line A (3, 2)

Find the missing coefficient in the equation of the line shown. Write the completed equation.

Solution

Step 1 Find the value of *A*. Substitute the coordinates of the given point for *x* and *y* in the equation.

$$Ax + 5y = -3$$
 Write equation.

$$A(\underline{2}) + 5(\underline{1}) = -3$$
 Substitute $\underline{2}$ for x and $\underline{1}$ for y .

$$2A + 5 = -3$$
 Simplify.
$$2A = -8$$
 Subtract 5 from each side.
$$A = -4$$
 Divide by 2.

Step 2 Complete the equation.

$$-4 x + 5y = -3$$
 Substitute -4 for A.

Checkpoint Complete the following exercises.

4. Write equations of the horizontal and vertical lines that pass through (-10, 5).

Horizontal: y = 5; Vertical: x = -10

5. Find the missing coefficient in the equation of the line that passes through (-2, 2). Write the completed equation.

$$6x + By = 4$$

$$B = 8$$
; $6x + 8y = 4$