5.6 Fit a Line to Data

Goal • Make scatter plots and write equations to model data.

Your Notes

VOCABULARY

Scatter plot A graph used to determine whether there is a relationship between paired data

Correlation The relationship between two data sets

Line of fit A model used to represent the trend in data showing a positive or negative correlation

CORRELATION

- If y tends to increase as x increases, the paired data correlation. are said to have a **positive**
- If y tends to decrease as x increases, the paired data are said to have a negative correlation.
- If x and y have no apparent relationship, the paired data are said to have relatively no correlation.

Example 1

Describe the correlation of data

Describe the correlation of data graphed in the scatter plot.

Solution

- negative correlation
- **b.** relatively no correlation

a. Make a scatter plot of the data in the table.

x	1	1.5	2	2	3	3.5	4
y	3	1	1	-0.5	-1	-0.5	-2

b. Describe the correlation of the data.

Solution

a. Treat the data as ordered pairs. Plot the ordered pairs as points in a coordinate plane.

b. The scatter plot shows a negative correlation.

USING A LINE OF FIT TO MODEL DATA

Step 1 Make a **scatter plot** of the data.

Step 2 Decide whether the data can be modeled by a line.

Step 3 Draw a line that appears to fit the data closely. There should be approximately as many points above the line as below it.

Step 4 Write an equation using two points on the line. The points do not have to represent actual data pairs, but they must lie on the line of fit.

Game Attendance The table shows the average attendance at a school's varsity basketball games for various years. Write an equation that models the average attendance at varsity basketball games as a function of the number of years since 2000.

Year	2000	2001	2002	2003	2004	2005	2006
Avg. Game Attendance	488	497	525	567	583	621	688

Solution

- Step 1 Make a scatter plot of the data. Let *x* represent the number of years since 2000. Let *y* represent average game attendance.
- **Step 2 Decide** whether the data can be modeled by a line. Because the scatter plot shows a positive correlation, you can fit a line to the data.

- **Step 3 Draw** a line that appears to fit the points in the scatter plot closely.
- Step 4 Write an equation using two points on the line. Use (1, 493) and (5, 621).

Find the slope of the line.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{621 - 493}{5 - 1}$$

$$= \frac{128}{4}$$

$$= 32$$

Your Notes

Find the y-intercept of the line. Use the point (5, 621).

$$y = mx + b$$

Write slope-intercept form.

$$621 = 32 (5) + b$$
 Substitute 32 for m, 5

for x, and 621 for y.

$$461 = b$$

Solve for b.

An equation of the line of fit is y = 32x + 461.

The average attendance y of varsity basketball games can be modeled by the function y = 32x + 461 where x is the number of years since 2000.

Checkpoint Complete the following exercises.

1. Make a scatter plot of the data in the table. Describe the correlation of the data.

X	1	2	2	3	4	5
у	5	5	6	7	8	8

positive correlation

Homework

2. Use the data in the table to write an equation that models y as a function of x.

x	1	2	3	4	5	6
у	65	76	82	86	92	97

$$y = 6x + 62$$