Solve Absolute Value Inequalities

Goal • Solve absolute value inequalities.

Your Notes

Example 1

Solve an absolute value inequality

Solve the inequality. Graph your solution.

a.
$$|x| \le 9$$

b.
$$|x| > \frac{1}{4}$$

Solution

a. The distance between x and 0 is less than or equal to 9. So, $-9 \le x \le 9$. The solutions are all real numbers less than or equal to 9 and greater than or equal to -9.

b. The distance between x and 0 is greater than $\frac{1}{4}$.

So,
$$x > \frac{1}{4}$$
 or $x < -\frac{1}{4}$. The solutions are all real

numbers greater than $\frac{1}{4}$ or less than $-\frac{1}{4}$

Note that < can be replaced by \leq and > can be replaced by \geq .

SOLVING ABSOLUTE VALUE INEQUALITIES

- The inequality |ax + b| < c where c > 0 is equivalent \rightarrow to the compound inequality -c < ax + b < c.
- The inequality |ax + b| > c where c > 0 is equivalent to the compound inequality ax + b < -c or ax + b > c

Your Notes

Example 2 Solve an absolute value inequality

Solve $\sum 2x - 7 \le 9$. Graph your solution.

Solution

$$\sum 2x - 7 \le 9$$

$$-9 < 2x - 7 < 9$$

Solution $\sum 2x - 7 \le 9$ Write original inequality.-9 < 2x - 7 < 9Rewrite as compound inequality.-2 < 2x < 16Add 7 to each expression.-1 < x < 8Divide each expression by 2.

$$-2 < 2x < 16$$

$$-1 < x < 8$$

The solutions are all real numbers $\frac{1}{2}$ greater than -1and less than 8. Check several solutions in the original inequality.

Example 3 Solve an absolute value inequality

Solve $\sum x + 8\sum - 4 \ \forall 2$. Graph your solution.

Solution

$$\sum x + 8\sum - 4 \forall 2$$

Write original

$$\sum x + 8 \sum \forall 6$$

$$x + 8 \forall 6 \quad or x + 8 \Im -6$$

$$x \forall \underline{-2}$$
 or

from each side.

 $\sum x + 8\sum - 4 \ \forall 2$ $\sum x + 8\sum \forall \underline{6}$ $x + 8 \ \exists \underline{-6}$ $x + 8 \ \forall \underline{-2}$ $x + 8 \ \exists \underline{-6}$ $x + 8 \ \exists \underline{$ The solutions are all real numbers greater than or

Your Notes

Checkpoint Solve the inequality. Graph your solution.

1.
$$3\sum x - 6\sum > 9$$

2.
$$\sum 6x - 11 \sum 37$$

$$\frac{2}{3}$$
 \Im x \Im 3

3.
$$-2\sum 6x - 1\sum + 5 < 3$$

$$x_{-}\frac{1}{3} or x < 0$$

SOLVING INEQUALITIES

One-Step and Multi-Step Inequalities

 Follow the steps for solving an equation, but reverse the inequality symbol when multiplying or dividing by a negative number.

Compound Inequalities

• If necessary, rewrite the inequality as two separate inequalities. Then solve each inequality separately. Include and or or in the solution.

Absolute Value Inequalities

• If necessary, isolate the absolute value expression on one side of the inequality. Rewrite the absolute value inequality as a compound inequality. Then solve the compound inequality.

Homework