8 1 Apply Exponent Properties **Involving Products**

Goal • Use properties of exponents involving products.

Your Notes

VOCABULARY

Order of magnitude The order of magnitude of a quantity is the power of 10 nearest the quantity.

PRODUCT OF POWERS PROPERTY

Let a be a real number, and let m and n be positive integers.

Words: To multiply powers having the same base, add the exponents.

Algebra: $a^m \cdot a^n = a^{\frac{m+n}{n}}$

Example: $5^6 \cdot 5^3 = 5 \frac{6+3}{} = 5 \frac{9}{}$

Example 1 Use the product of powers property

Simplify the expression.

a.
$$2^2 \cdot 2^3 = 2 \cdot 2^{\frac{2+3}{5}}$$

b.
$$w^9 \cdot w^2 \cdot w^7 = w_{\underline{9+2+7}}$$

= $w_{\underline{18}}$

c.
$$4^4 \cdot 4 = 4^4 \cdot 4 \frac{1}{1}$$

= $4 \frac{4+1}{5}$

d.
$$(-6)(-6)^6 = (-6)\frac{1}{1} \cdot (-6)^6$$

= $(-6)\frac{1+6}{1}$
= $(-6)\frac{7}{1}$

When simplifying

only, write your

answers using exponents.

powers with numerical bases

Your Notes

POWER OF A POWER PROPERTY

Let a be a real number, and let m and n be positive integers.

Words: To find a power of a power, multiply exponents.

Algebra: $(a^m)^n = a^{\underline{mn}}$

Example: $(3^4)^2 = 3^{4 \cdot 2} = 3^{8}$

Example 2 Use the power of a power property

Simplify the expression.

a.
$$(5^2)^3 = 5_{\underline{}}^{\underline{} \underline{} \underline{}} = 5_{\underline{}}^{\underline{} \underline{}}$$

b.
$$(n^7)^2 = n^{-7 \cdot 2} = n^{-14}$$

b.
$$(n^7)^2 = n \frac{7 \cdot 2}{14} = n \frac{14}{14}$$

c. $[(-3)^5]^3 = (-3) \frac{5 \cdot 3}{15}$
 $= (-3) \frac{15}{15}$
d. $[(z-4)^2]^5 = (z-4) \frac{2 \cdot 5}{15}$

d.
$$[(z-4)^2]^5 = (z-4)^{2 \cdot 5}$$

= $(z-4)^{10}$

POWER OF A PRODUCT PROPERTY

Let a and b be real numbers, and let m be a positive integer.

Words: To find a power of a product, find the **power of** each factor and multiply.

Algebra: $(ab)^m = a^m b^m$

Example: $(23 \cdot 17)^5 = 23^5 \cdot 17^5$

Example 3 Use the power of a product property

Simplify the expression.

a.
$$(4 \cdot 16)^7 = 4^7 \cdot 16^7$$

b.
$$(-3rs)^2 = (\underline{-3 \cdot r \cdot s})^2 = (\underline{-3})^2 \cdot \underline{r^2 \cdot \underline{s^2}}$$

$$= \underline{9r^2s^2}$$
c. $-(3rs)^2 = -(\underline{3 \cdot r \cdot s})^2 = -(\underline{3^2 \cdot \underline{r^2 \cdot \underline{s^2}}})$

c.
$$-(3rs)^2 = -(\underline{3 \cdot r \cdot s})^2 = -(\underline{3}^2 \cdot \underline{r}^2 \cdot \underline{s}^2)$$

= $-9r^2s^2$

When simplifying powers with numerical and variable bases. evaluate the numerical power.

Your Notes

Checkpoint Simplify the expression.

1. $(-7)^8(-7)^5$ $(-7)^{13}$	2. k ³ · k · k ²	3. $(p^3)^4$ p^{12}
4. $[(q + 8)^2]^6$ $(q + 8)^{12}$	5. $(8cd)^2$ $64c^2d^2$	6. −(5 <i>z</i>) ³ −125 <i>z</i> ³

Example 4 Use all three properties

Simplify $x^2 \cdot (3x^3y)^3$.

Solution

$$x^{2} \cdot (3x^{3}y)^{3} = \underbrace{x^{2} \cdot 3^{3} \cdot (x^{3})^{3} \cdot y^{3}}_{\text{Power of a}}$$

$$= \underbrace{x^{2} \cdot 27 \cdot x^{9} \cdot y^{3}}_{\text{Power of a}}$$

$$= \underbrace{27x^{11}y^{3}}_{\text{powers}}$$
Power of a
power property
Product of
powers property

Checkpoint Simplify the expression.

7. (2 <i>x</i> ⁵) ⁴	8. $(3y^3)^4 \cdot y^5$
16 <i>x</i> ²⁰	8. $(3y^3)^4 \cdot y^5$ 81 y^{17}