8.3 Define and Use Zero and **Negative Exponents**

Goal • Use zero and negative exponents.

Your Notes

DEFINITION OF ZERO AND NEGATIVE EXPONENTS

Words	Algebra	Example
a to the zero power	$a^0 = \underline{1}$, $a \neq 0$	5 ⁰ = <u>1</u>
is 1.		
a^{-n} is the reciprocal of a^n .	$a^{-n} = \frac{1}{\underline{a^n}}, a \neq 0$	$2^{-1} = \frac{1}{2}$
a^n is the reciprocal of a^{-n} .	$a^n = \frac{1}{\underline{a^{-n}}}, a \neq 0$	$2 = \frac{1}{2^{-1}}$

Example 1 Use definition of zero and negative exponents

Evaluate the expression.

Your Notes

PROPERTIES OF EXPONENTS

Let a and b be real numbers, and let m and n be

$$a^m \cdot a^n = a^{\frac{m+n}{n}}$$

$$(a^m)^n = a \underline{}$$

$$(ab)^m = a^m b^m$$

$$a^{m} \cdot a^{n} = a \underline{\qquad m+n \qquad}$$
 Product of powers property
 $(a^{m})^{n} = a \underline{\qquad mn \qquad}$ Power of a power property
 $(ab)^{m} = \underline{\qquad a^{m}b^{m} \qquad}$ Power of a product property
 $\underline{\qquad a^{m}a^{n} = a \underline{\qquad m-n \qquad}}, a \neq 0$ Quotient of powers property

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$
, $b \neq 0$ Power of a quotient property

Example 2 Evaluate exponential expressions

Evaluate the expression.

a.
$$(-5)^4 \cdot (-5)^{-4} = \underline{(-5)^4 + (-4)}$$

Product of powers property

Add exponents.

Definition of

Power of a power property

zero exponent

b. $(5^{-2})^{-2} = \underline{5^{-2} \cdot (-2)}$ $= \underline{5^{4}}$ $= \underline{625}$

exponents.

Evaluate power.

Multiply

Definition of

negative exponents

Evaluate power.

Quotient of powers property

Subtract

$$= 3^3$$

exponents.

Evaluate power.

Your Notes

Checkpoint Evaluate the expression.

1. $\left(\frac{1}{8}\right)^{-1}$	2. $\frac{1}{3^{-2}}$
3. $\frac{6^{-1}}{6}$ $\frac{1}{36}$	4. (5 ⁻¹) ² 1 25

Use properties of exponents Example 3

Simplify the expression $\frac{2w^{-3}x}{(2wx)^2}$. Write your answer using only positive exponents.

Solution

$$\frac{2w^{-3}x}{(2wx)^2} = \frac{2x}{w^3(2wx)^2}$$

$$= \frac{2x}{w^3(4w^2x^2)}$$

$$= \frac{2x}{4w^5x^2}$$

$$= \frac{1}{2w^5x}$$

Definition of negative exponents

Power of a product property

Product of powers property

Quotient of powers property

Checkpoint Simplify the expression.

Homework

5.
$$\frac{6fg^{-4}}{2f^2g}$$

$$\frac{3}{fg^5}$$

6.
$$(3yz^2)^{-2}$$

$$\frac{1}{9 v^2 z^4}$$