# Write and Graph Exponential **Growth Functions**

**Goal** • Write and graph exponential growth models.

## Your Notes

#### **VOCABULARY**

Exponential function A function of the form  $y = ab^{x}$ where  $a \neq 0$ , b > 0, and  $b \neq 1$ 

Exponential growth A quantity that increases by the same percent over equal time periods

Compound interest Interest earned on both an initial investment and on previously earned interest

### Example 1

Write a function rule

Write a rule for the function.

| X | -2            | -1            | 0 | 1 | 2 |
|---|---------------|---------------|---|---|---|
| у | <u>2</u><br>9 | <u>2</u><br>3 | 2 | 6 | 8 |

#### **Solution**

- Step 1 Tell whether the function is exponential. Here the y-values are multiplied by 3 for each increase of 1 in x, so the table represents an exponential function of the form  $y = ab^{x}$  where b = 3.
- **Step 2 Find** the value of a by finding the value of y when x = 0. When x = 0,  $y = ab^0 = a \cdot 1 = a$ . The value of y when x = 0 is  $\frac{2}{3}$ , so  $\frac{2}{3} = \frac{2}{3}$ .
- Step 3 Write the function rule. A rule for the function is  $y = 2 \cdot 3^X.$

Graph the function  $y = 3^x$ . Identify its domain and range.

### **Solution**

**Step 1 Make** a table by choosing a few values for x and finding the values of y. The domain is all real numbers.

| X | -2            | -1  | 0 | 1 | 2 |
|---|---------------|-----|---|---|---|
| у | <u>1</u><br>9 | 1/3 | 1 | 3 | 9 |



Step 2 Plot the points.

Step 3 Draw a smooth curve through the points. From either the table or the graph, you can see that the range is all positive real numbers.

# **Compare graphs of exponential functions**

Graph  $y = 2 \cdot 3^x$ . Compare the graph with the graph of  $y = 3^{x}$ .

#### Solution

To graph each function, make a table of values, plot the points, and draw a smooth curve through the points.



| Х  | $y=3^x$ | $y=2\cdot 3^{x}$ |
|----|---------|------------------|
| -2 | 19      | <u>2</u><br>9    |
| -1 | 1/3     | 2/3              |
| 0  | 1       | 2                |
| 1  | 3       | 6                |
| 2  | 9       | _18_             |

Because the y-values for  $y = 2 \cdot 3^x$  are 2 times the corresponding y-values for  $y = 3^x$ , the graph of  $y = 2 \cdot 3^x$ is a vertical stretch of the graph of  $y = 3^x$ .

# **Your Notes**

# **Checkpoint** Complete the following exercises.

**1.** Write a rule for the function.

| X | -2              | -1             | 0  | 1  | 2   |
|---|-----------------|----------------|----|----|-----|
| y | $-\frac{1}{16}$ | $-\frac{1}{4}$ | -1 | -4 | -16 |

$$y = -1 \cdot 4x$$

**2.** Graph  $y = 4^x$ . Identify its domain and range.

> The domain is all real numbers. The range is all positive real numbers.



3. Graph  $y = -2 \cdot 3^x$ . Compare the graph with the graph of  $y = 3^{x}$ .

The graph of  $y = -2 \cdot 3^x$ is a vertical stretch and a reflection in the x-axis of the graph of  $y = 3^x$ .



#### **Your Notes**

### **EXPONENTIAL GROWTH MODEL**

```
y = a(1 + r)^t
a is the initial amount . r is the growth rate .
1 + r is the growth factor. t is the time period.
```

#### Solve a compound interest problem Example 4

**Investment** You put \$250 in a savings account that earns 4% annual interest compounded yearly. You do not make any deposits or withdrawals. How much will your investment be worth in 10 years?

## **Solution**

The initial amount is \$250, the interest rate is 4%, or 0.04, and the time period is 10 years.

$$y = a(1 + r)t$$
 Write exponential growth model.

$$= \underline{250} (1 + \underline{0.04}) \underline{10}$$
 Substitute  $\underline{250}$  for  $a$ ,  $\underline{0.04}$  for  $r$ , and  $\underline{10}$  for  $t$ .

$$= 250(\underline{1.04})^{10}$$
 Simplify.

$$\approx 370.06$$
 Use a calculator.

You will have \$370.06 in 10 years.

# **Checkpoint** Complete the following exercise.

4. In Example 4, suppose the annual interest rate is 5%. How much will your investment be worth in 10 years?

about \$407.22

#### **Homework**