Find and Use Slopes of Lines

Goal • Find and compare slopes of lines.

Your Notes

VOCABULARY

Slope The slope of a nonvertical line is the ratio of vertical change (rise) to horizontal change (run) between any two points on the line.

SLOPE OF LINES IN THE COORDINATE PLANE

Negative slope: falls from left to right, as in line j

Positive slope: rises from left to right, as in line k

Undefined slope: vertical, as in line n

Zero slope (slope of 0): horizontal, as in line ℓ

Slope

$$m = \frac{\text{rise}}{\text{run}}$$
$$= \frac{y_2 - y_1}{x_2 - x_1}$$

Example 1 Find slopes of lines in a coordinate plane

Find the slope of line a and line c.

Slope of line a:

$$m = \frac{6 - 2}{4 - 0} = \frac{4}{4} = \underline{1}$$

(0, 6)(4, 6) (7, 3) (0, 2)(4, 0)

Slope of line c:

$$m = \frac{6 - 6}{4 - 0} = \frac{0}{4} = \underline{0}$$

Checkpoint Use the graph in Example 1. Find the slope of the line.

1. line *b*

-1

2. line *d*

undefined

Your Notes

POSTULATE 17 SLOPES OF PARALLEL LINES

In a coordinate plane, two nonvertical lines are parallel if and only if they have the same slope.

Any two vertical lines are parallel.

If the product of two numbers is -1, then the numbers are called *negative* reciprocals.

POSTULATE 18 SLOPES OF PERPENDICULAR LINES

In a coordinate plane, two nonvertical lines are perpendicular if and only if the product of their slopes is -1.

Horizontal lines are perpendicular to vertical lines.

Example 2

Identify parallel lines

Find the slope of each line. Which lines are parallel?

Solution

Find the slope of k_1 .

$$m = \frac{-1 - (-6)}{-3 - (-4)} = \frac{5}{1} = \underline{5}$$

$$m = \frac{2 - (-4)}{2 - 1} = \underline{6}$$

Find the slope of
$$k_2$$
.

Find the slope of k_3 .

$$m = \frac{2 - (-4)}{2 - 1} = \underline{6}$$

$$m = \frac{2 - (-3)}{4 - 3} = \underline{5}$$

Compare the slopes. Because k_1 and k_3 have the same slope, they are $\underline{\text{parallel}}$. The slope of k_3 is different, so k_3 is <u>not parallel</u> to the other lines.

Checkpoint Complete the following exercise.

3. Line c passes through (2, -2) and (5, 7). Line d passes through (-3, 4) and (1, -8). Are the two lines parallel? Explain how you know.

No; the slope of *c* is not equal to the slope of *d*.

Your Notes

Draw a perpendicular line Example 3

Line h passes through (1, -2) and (5, 6). Graph the line perpendicular to h that passes through the point (2, 5).

Step 1 Find the slope m_1 of h through (1, -2) and (5, 6).

$$m_1 = \frac{6 - (-2)}{5 - 1} = \frac{8}{4} = \underline{2}$$

Step 2 Find the slope m_2 of a line perpendicular to h.

$$m_2 = -1$$
 $m_2 = -\frac{1}{2}$

Step 3 Use the rise and run to graph the line.

Example 4 Analyze graphs

Delivery A trucker made three deliveries. The graph shows the trucker's distance to the destination from the starting time to the arrival time for each delivery. Use slopes to make a statement about the deliveries.

The rate at which the trucker drives is represented by the slope of the segments. Segments a and c have the same slope, so deliveries a and c were driven at the same rate.

Checkpoint Complete the following exercises.

4. Line *n* passes through (1, 6) and (8, 4). Line *m* passes through (0, 5) and (2, 12). Is $n \perp m$? Explain.

Yes, the product of the slopes equals -1.

5. In Example 4, which delivery included the fastest rate of travel?

delivery b

find a second point and draw the line.

Homework

Given a point on a

line and the line's

slope, you can use the rise and run to