6 Prove Theorems About **Perpendicular Lines**

Goal • Find the distance between a point and a line.

Your Notes

VOCABULARY

Distance from a point to a line The distance from a point to a line is the length of the perpendicular segment from the point to the line.

THEOREM 3.8

If two lines intersect to form a linear pair of congruent angles, then the lines are perpendicular.

If $\angle 1 \cong \angle 2$, then $g \perp h$.

THEOREM 3.9

If two lines are perpendicular, then they intersect to form four right angles .

If $a \perp b$, then $\angle 1$, $\angle 2$, $\angle 3$, and $\angle 4$ are right angles.

Draw conclusions Example 1

In the diagram at the right, $\angle 1 \cong \angle 2$. What can you conclude about a and b?

Solution

Lines a and b intersect to form a linear pair of congruent angles , $\angle 1$ and $\angle 2$. So, by Theorem 3.8, $a \perp b$.

Your Notes

THEOREM 3.10

If two sides of two adjacent acute angles are perpendicular, then the angles are complementary.

If $\overrightarrow{BA} \perp \overrightarrow{BC}$, then $\angle 1$ and $\angle 2$ are complementary.

Example 2 Write a proof

In the diagram at the right, $\angle 1 \cong \angle 2$. Prove that $\angle 3$ and $\angle 4$ are complementary.

Given
$$\angle 1 \cong \angle 2$$

Prove $\angle 3$ and $\angle 4$ are complementary.

Statements

- 3. \angle 3 and \angle 4 are complementary. 3. Theorem 3.10

Reasons

- 1. Given
- 2. Theorem 3.8
- **Checkpoint** Complete the following exercises.
 - **1.** If $c \perp d$, what do you know about the sum of the measures of $\angle 3$ and $\angle 4$? Explain.

Because $c \perp d$, angles 1, 2, 3, and 4 are right angles by Theorem 3.9. So, $m \angle 3 + m \angle 4 = 180^{\circ}$.

2. Using the diagram in Example 2, complete the following proof that $\angle QPS$ and $\angle 1$ are right angles.

Statements

2.
$$\overrightarrow{PS} \perp \overrightarrow{PQ}$$
 3. $\angle QPS$ and $\angle 1$ are

right angles.

Reasons

- **1.** Given
- **2.** Theorem 3.8
- **3.** Theorem 3.9

Your Notes

THEOREM 3.11 PERPENDICULAR TRANSVERSAL **THEOREM**

If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other.

If $h \parallel k$ and $j \perp h$, then $j \perp k$.

THEOREM 3.12 LINES PERPENDICULAR TO A TRANSVERSAL THEOREM

In a plane, if two lines are perpendicular to the same line, then they are parallel to each other.

If $m \perp p$ and $n \perp p$, then $m \mid n$.

Example 3

Draw conclusions

Determine which lines, if any, must be parallel in the diagram. Explain your reasoning.

Solution

Lines r and s are both perpendicular to x, so by Theorem 3.12, $r \parallel s$. Similarly, lines x and y are both perpendicular to r, so $x \mid y$. Also, lines x and z are both perpendicular to s, so $x \mid z$. Finally, because y and z are both parallel to x, you know that $y \mid z$ by the Transitive Property of Parallel Lines.

3. Is $c \parallel d$? Explain.

Yes, because c and d are both perpendicular to $a, c \mid d$ by Theorem 3.12.

4. Is $b \perp d$? Explain.

Yes, because $b \perp c$, and $c \parallel d$ as explained in Exercise 3, then $b \perp d$ by Theorem 3.11.

Your Notes

Example 4

Find the distance between two parallel lines

Railroads The section of broad gauge railroad track at the right are drawn on a graph where units are measured in inches. What is the width of the track?

Solution

You need to find the length of a perpendicular segment from one side of the track to the other.

Using Q(71, 34) and R(91, 55), the slope of each rail is

$$\frac{55 - 34}{91 - 71} = \frac{21}{20}$$

The segment PQ has a slope of

$$\frac{74 - \boxed{34}}{29 - \boxed{71}} = \underline{\frac{40}{-42}} = \underline{-\frac{20}{21}}$$

The segment PQ is perpendicular to the rail so PQ is

$$d = \sqrt{(\underline{29-71})^2 + (\underline{74-34})^2} = \underline{58}$$
.

The width of the track is $\underline{\ 58\ inches}\ .$

Checkpoint Complete the following exercise.

5. What is the approximate distance from line *m* to line *n*?

about 3.2 units

Homework