6 Use Congruent Triangles

 Use congruent triangles to prove corresponding parts congruent.

Your Notes

Example 1

Use congruent triangles

Explain how you can use the given information to prove that the triangles are congruent.

Given
$$\angle 1 \cong \angle 2$$
, $\overline{AB} \cong \overline{DE}$

Solution

If you can show that $\triangle ABC \cong \triangle DEC$, you will know that $\overline{DC} \cong \overline{AC}$. First, copy the diagram and mark the given information. Then add the information that you can deduce. In this case, $\angle ABC$ and $\angle DEC$ are supplementary to congruent angles, so \angle ABC \cong \angle DEC . Also, \angle ACB \cong \angle DCE .

Mark given information.

Add deduced information.

Two angle pairs and a non-included side are congruent, so by the AAS Congruence Theorem, \triangle ABC $\cong \triangle$ DEC. Because corresponding parts of congruent triangles are congruent, $\overline{DC} \cong \overline{AC}$.

Your Notes

When you cannot easily measure a length directly, you can make conclusions about the length indirectly, usually by calculations based on known lengths.

Example 2 Use congruent triangles for measurement

Boats Use the following method to find the distance between two docked boats, from point A to point B.

- Place a marker at D so that $AB \perp BD$.
- Find C, the midpoint of BD.
- Locate the point E so that BD \perp DE and A, C, and E are collinear.
- Explain how this plan allows you to find the distance.

Solution

Because $AB \perp BD$ and $BD \perp DE$. $\angle B$ and $\angle D$ are congruent right angles. Because C is the midpoint of BD, $BC \cong DC$. The vertical angles $\angle ACB$ and $\angle ECD$ are congruent. So, $\triangle CBA \cong \triangle CDE$ by the ASA Congruence Postulate.

Then, because corresponding parts of congruent triangles are congruent, BA = DE. So, you can find the distance AB between the boats by measuring DE.

Checkpoint Complete the following exercises.

1. Explain how you can prove that $\overline{PR} \cong OS$.

Use the AAS Congruence Theorem to show $\triangle PTS \cong \triangle QTR$. Because corresponding pairs of congruent triangles are congruent, $PT \cong QT$. Then $PR \cong QS$ because $ST \cong RT$.

2. In Example 2, does it matter how far away from point B you place a marker at point D? Explain.

Point D should be placed far enough away from point B so that it is on land. This allows DE to be easily measured. However, the method will work regardless of how far D is from B.

Your Notes

Plan a proof involving pairs of triangles

Use the given information to write a plan for proof.

Given $\angle 1 \cong \angle 2$, $\angle 3 \cong \angle 4$

Prove $\triangle ABD \cong \triangle ACD$

Solution

Example 3

In $\triangle ABD$ and $\triangle ACD$, you know that $\angle 1 \cong \angle 2$ and $\overline{AD} \cong \overline{AD}$. If you can show that $\overline{BD} \cong CD$, you can use the SAS Congruence Postulate.

To prove that $\overline{BD} \cong \overline{CD}$, you can first prove that $\triangle BED \cong \triangle CED$. You are given $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$. $\overline{ED} \cong \overline{ED}$ by the Reflexive Property and $\angle BDE \cong \angle CDE$ by the Congruent Supplements Theorem. You can use the AAS Congruence Theorem to prove that $\triangle BED \cong \triangle CED$.

Plan for Proof Use the AAS Congruence Theorem to prove that $\triangle BED \cong \triangle CED$. Then state that $\overline{BD} \cong \overline{CD}$. Use the SAS Congruence Postulate to prove that $\triangle ABD \cong \triangle ACD$.

Checkpoint Use the given information to write a plan for proof.

3. Given $\overline{GH} \cong \overline{KJ}$, $\overline{FG} \cong \overline{LK}$, \angle FJG and \angle LHK are rt. \angle s.

Prove $\triangle FJK \cong \triangle LHG$

Plan for Proof: Use the HL Congruence Theorem to prove that $\triangle FJG \cong \triangle LHK$. Then state that $FJ \cong LH$. Then show that $\angle FJK \cong \angle LHG$ and use the SAS Congruence Postulate to prove that $\triangle FJK \cong \triangle LHG$.

Your Notes

Example 4

Prove a construction

Write a proof to verify that the construction for copying an obtuse angle is valid.

Solution

Add BC and EF to the diagram. In the construction, \overline{AB} , \overline{DE} , \overline{AC} , and \overline{DF} are determined by the same compass setting, as are BC and EF. So, you can assume the following as given statements.

Given
$$\overline{AB}\cong \underline{\overline{DE}}$$
, $\overline{AC}\cong \underline{\overline{DF}}$, $\overline{BC}\cong \underline{\overline{EF}}$

Prove
$$\angle D \cong \angle A$$

Show that $\triangle CAB \cong \triangle FDE$, so you can conclude Plan that the corresponding parts $\angle D$ and $\angle A$ are for **Proof** congruent.

	Statements	Reasons
Plan	1. \overline{AB} ≅ $\overline{\underline{DE}}$,	1. Given
for	$\overline{AC}\cong \underline{DF}$,	
Action	$\overline{BC} \cong \overline{FF}$	
	2. $\triangle CAB \cong \triangle FDE$	2. SSS Congruence
		Postulate
	3. ∠D ≅ <u>∠A</u>	3. Corresp. parts of \cong triangles are \cong .

Checkpoint Complete the following exercise.

4. Write a paragraph proof to verify that the construction for bisecting a right angle is valid.

Homework

You know that $\overline{AC} \cong \overline{AB}$ and $BD \cong CD$ because they are determined by the same compass settings. Also, $\overline{AD} \cong \overline{AD}$ by the Reflexive Property. So, by the SSS Congruence Postulate, $\triangle CAD \cong \triangle BAD$. Thus, $\angle CAD \cong \angle BAD$ because corresponding parts of congruent triangles are congruent.