4.8 Perform Congruence **Transformations**

Goal • Create an image congruent to a given triangle.

Your Notes

VOCABULARY

Transformation A transformation is an operation that moves or changes a geometric figure in some way to produce a new figure.

Image The new figure produced by a transformation is the image.

Translation A translation moves every point of a figure the same distance in the same direction.

Reflection A reflection uses a *line of reflection* to create a mirror image of the original figure.

Rotation A rotation turns a figure about a fixed point, called the *center of rotation*.

Congruence Transformation A congruence transformation changes the position of a figure without changing its size or shape.

Example 1

Identify transformations

Name the type of transformation demonstrated in each picture.

Rotation

about a point

Translation

in a straight path

Reflection in a vertical

line

Your Notes

COORDINATE NOTATION FOR A TRANSLATION

You can describe a translation by the notation

$$(x, y) \rightarrow (x + a, y + b)$$

which shows that each point (x, y)of the unshaded figure is translated horizontally a units and vertically b units.

Example 2 Translate a figure in the coordinate plane

Figure ABCD has the vertices A(1, 2), B(3, 3), C(4, -1), and D(1, -2). Sketch ABCD and its image after the translation $(x, y) \rightarrow (x - 4, y + 2)$.

Solution

First draw ABCD. Find the translation of each vertex by subtracting 4 from its x-coordinate and adding 2 to its y-coordinate. Then draw ABCD and its image.

$$(x, y) \rightarrow (x - 4, y + 2)$$

$$A(1,2) \rightarrow (-3,4)$$

$$B(3,3) \rightarrow (-1,5)$$

$$C(4,-1) \rightarrow (0,1)$$

$$D(1, -2) \rightarrow (-3, 0)$$

COORDINATE NOTATION FOR A REFLECTION

Reflection in the *x*-axis

Multiply *y*-coordinate by -1.

$$(x, y) \rightarrow (x, -y)$$
 $(x, y) \rightarrow (-x, y)$

Reflection in the y-axis

Multiply x-coordinate

by
$$-1$$
.

$$(x, y) \rightarrow (-x, y)$$

Example 3

Reflect a figure in the x-axis

Shapes You are cutting figures out of paper. Use a reflection in the *x*-axis to draw the other half of the figure.

Solution

Multiply the $\underline{\hspace{0.1cm} {\rlap/}{\hspace{0.1cm} -\hspace{0.1cm} -\hspace{0.1cm} -\hspace{0.1cm} -\hspace{0.1cm} 1}}$ of each vertex by -1 to find the corresponding vertex in the image. Then draw the image.

$$(x, y) \rightarrow (x, -y)$$

$$(-1,0) \rightarrow (-1,0)$$

$$(1, 1) \rightarrow \underline{(1, -1)}$$

$$(2,4) \rightarrow \underline{(2,-4)}$$

$$(3, 1) \rightarrow (3, -1)$$

$$(7,0) \rightarrow (7,0)$$

You can check your results by looking to see if each original point and its image are the same distance from the *x*-axis .

Checkpoint Complete the following exercises.

1. Name the type of transformation shown.

Translation

2. Figure *FGHJ* has the vertices F(0, 2), G(2, 3), H(3, 3), and J(0, -2). Sketch *FGHJ* and its image after (a) the translation $(x, y) \rightarrow (x - 3, y + 1)$ and (b) a reflection in the *y*-axis.

Graph \overline{JK} and \overline{LM} . Tell whether \overline{LM} is a rotation of \overline{JK} about the origin. If so, give the angle and direction of rotation.

a.
$$J(3, 1)$$
, $K(1, 4)$, $L(-1, 3)$, $M(-4, 1)$

b.
$$J(-2, 1), K(-1, 5), L(1, 1), M(2, 5)$$

Solution

a.

$$m \angle JOL = m \angle KOM = 90^{\circ}$$

90° counterclockwise rotation

b.

not a rotation

- **Checkpoint** Graph \overline{RS} and \overline{TV} . Tell whether \overline{TV} is a rotation of \overline{RS} about the origin. If so, give the angle of rotation.
 - 3. R(-3, -2), S(-3, 2), T(-1, 2), V(3, 2)

 $m \angle ROT < m \angle SOV$ not a rotation

4. R(-1, 1), S(-4, 2),T(1, -1), V(4, -2)

 $m \angle ROT = m \angle SOV$ $= 180^{\circ}$

180° rotation

The vertices of $\triangle PQR$ are P(2,2), Q(3,4), and R(5,2). The notation $(x,y) \rightarrow (x+1,y-6)$ describes the translation of $\triangle PQR$ to $\triangle XYZ$. Show that $\triangle PQR \cong \triangle XYZ$ to verify that the translation is a congruence transformation.

Solution

- **S** You can see that PR = XZ = 3, so $\overline{PR} \cong \overline{XZ}$.
- A Using the slopes, $\overline{PQ} \parallel \underline{XY}$ and $\overline{QR} \parallel \underline{YZ}$. If you extend \overline{PQ} and \overline{XZ} to form $\angle V$, the Corresponding Angles Postulate gives you

 $\angle{OPR} \cong \angle{V}$ and $\angle{V} \cong \underline{\angle{YXZ}}$. Then, $\underline{\angle{OPR}} \cong \underline{\angle{YXZ}}$ by the Transitive Property of Congruence.

Because $\triangle PQR \cong \triangle XYZ$, the translation is a congruence transformation.

Checkpoint Complete the following exercise.

5. Show that $\triangle ABC \cong \triangle EDC$ to verify that the transformation is a congruence transformation.

You can see that AB = ED = 4 and BC = DC = 3. Also, $\angle B$ and $\angle D$ are congruent right angles. So, $\triangle ABC \cong \triangle EDC$ by the SAS Congruence Postulate.

Homework