5.3 Use Angle Bisectors of **Triangles**

Goal • Use angle bisectors to find distance relationships.

Your Notes

VOCABULARY

Incenter The point of concurrency of the three angle bisectors of a triangle is called the incenter of the triangle.

THEOREM 5.5: ANGLE BISECTOR THEOREM

If a point is on the bisector of an angle, then it is equidistant from the two sides of the angle.

If \overrightarrow{AD} bisects $\angle BAC$ and $\overrightarrow{DB} \perp \overrightarrow{AB}$ and $\overline{DC} \perp AC$, then DB = DC.

In Geometry, distance means the shortest length between two objects.

THEOREM 5.6: CONVERSE OF THE ANGLE **BISECTOR THEOREM**

If a point is in the interior of an angle and is equidistant from the sides of the angle, then it lies on the bisector of the angle.

If $\overline{DB} \perp \overline{AB}$ and $\overline{DC} \perp \overline{AC}$ and DB = DC, then \overrightarrow{AD} bisects $\angle BAC$.

Example 1

Use the Angle Bisector Theorems

Find the measure of $\angle CBE$.

Solution

Because $\overline{EC} \perp \overline{BC}$ and $\overline{ED} \perp \overline{BD}$ and EC = ED = 21. BE bisects ∠CBD by the Converse of the Angle Bisector Theorem . So, $m\angle CBE = m\angle DBE = 31^{\circ}$.

Solve a real-world problem

Web A spider's position on its web relative to an approaching fly and the opposite sides of the web forms congruent angles, as shown. Will the spider have to move farther to reach a fly toward the right edge or the left edge?

Solution

The congruent angles tell you that the spider is on the bisector of *LFR*. By the Angle Bisector Theorem , the spider is equidistant from \overline{FL} and \overline{FR} .

So, the spider must move the **same distance** to reach each edge.

Example 3

Use algebra to solve a problem

For what value of x does P lie on the bisector of $\angle J$?

Solution

From the Converse of the Angle Bisector Theorem, you know that *P* lies on the bisector of $\angle J$ if P is equidistant from the sides of $\angle J$, so when PK = PL.

$$\frac{PK}{V+1} = \frac{PL}{V-5}$$
 Set s

 $\underline{PK} = \underline{PL}$ Set segment lengths equal.

$$\frac{x+1}{x+1} = \frac{2x-5}{x+1}$$
 Substitute expressions for segment lengths.

$$6 = x$$
 Solve for x .

Point P lies on the bisector of $\angle J$ when x = 6.

THEOREM 5.7: CONCURRENCY OF ANGLE **BISECTORS OF A TRIANGLE**

The angle bisectors of a triangle intersect at a point that is equidistant from the sides of the triangle.

If \overline{AP} , \overline{BP} , and \overline{CP} are angle bisectors of $\triangle ABC$, then

$$PD = \underline{PE} = \underline{PF}$$
.

Your Notes

Example 4

Use the concurrency of angle bisectors

In the diagram, L is the incenter of \triangle *FHJ*. Find *LK*.

By the Concurrency of Angle Bisectors of a Triangle Theorem, the incenter L is equidistant from the sides of \triangle *FHJ*. So, to find *LK*, you can find \angle / in \triangle *LHI*. Use the Pythagorean Theorem.

$$\frac{c^2}{15^2} = \frac{a^2 + b^2}{16^2 + 12^2}$$

$$15^2 = L/^2 + 12^2$$

$$81 = L/^2$$

Take the positive square root of each side.

Because L/ = LK, LK = 9.

f Checkpoint In Exercises 1 and 2, find the value of x.

1.

$$x = 10$$

2.

$$x = 3$$

3. Do you have enough information to conclude that AC bisects ∠DAB? Explain.

No, you must know that $m\angle ABC = m\angle ADC = 90^{\circ}$ before you can conclude that AC bisects $\angle DAB$.

4. In Example 4, suppose you are not given HL or HI, but you are given that JL = 25 and JI = 20. Find LK.

$$LK = 15$$