Use Medians and Altitudes

Goal • Use medians and altitudes of triangles.

Your Notes

VOCABULARY

Median of a triangle The median of a triangle is a segment from a vertex to the midpoint of the opposite side.

Centroid The point of concurrency of the three medians of a triangle is the centroid.

Altitude of a triangle An altitude of a triangle is the perpendicular segment from a vertex to the opposite side or to the line that contains the opposite side.

Orthocenter The point at which the lines containing the three altitudes of a triangle intersect is called the orthocenter of the triangle.

THEOREM 5.8: CONCURRENCY OF MEDIANS OF A **TRIANGLE**

The medians of a triangle intersect at a point that is two thirds of the distance from each vertex to the midpoint of the opposite side.

The medians of $\triangle ABC$ meet at P and $AP = \frac{2}{3} AE$,

$$BP = \frac{2}{3} \underline{BF}$$
, and $CP = \frac{2}{3} \underline{CD}$.

Your Notes

Example 1 Use the centroid of a triangle

In \triangle FGH, M is the centroid and GM = 6. Find ML and GL.

$$\underline{\underline{GM}} = \underline{\frac{2}{3}} GL$$
 Concurrency of Medians of a Triangle Theorem

$$\underline{6} = \frac{2}{3} GL$$
 Substitute $\underline{6}$ for GM

Then
$$ML = GL - GM = 9 - 6 = 3$$
.
So, $ML = 3$ and $GL = 9$.

Checkpoint Complete the following exercise.

1. In Example 1, suppose FM = 10. Find MK and FK.

$$MK = 5$$
, $FK = 15$

Example 2 Find the centroid of a triangle

The vertices of $\triangle JKL$ are J(1, 2), K(4, 6), and L(7, 4). Find the coordinates of the centroid P of $\triangle JKL$.

Sketch $\triangle JKL$. Then use the Midpoint Formula to find the midpoint M of \overline{JL} and sketch median \overline{KM} .

The centroid is two thirds of the distance from each vertex to the midpoint of the opposite side.

The distance from vertex *K* to point

$$M$$
 is $6 - 3 = 3$ units. So, the centroid is

$$\frac{2}{3}$$
 (3) = 2 units down from *K* on \overline{KM} .
The coordinates of the centroid *P* are (4, 6 - 2),

Median \overline{KM} was used in Example 2 because it is easy to find distances on a vertical segment. You can check by finding the centroid using a different median.

Your Notes

THEOREM 5.9: CONCURRENCY OF ALTITUDES OF A TRIANGLE

The lines containing the altitudes of a triangle are concurrent.

The lines containing \overline{AF} , \overline{BE} , and \overline{CD} meet at G.

Example 3

Find the orthocenter

Notice that in a right triangle the legs are also altitudes. The altitudes of the obtuse triangle are extended to find the orthocenter.

Find the orthocenter P in the triangle.

a.

b.

Solution

b.

- **Checkpoint** Complete the following exercises.
 - **2.** In Example 2, where do you need to move point *K* so that the centroid is P(4, 5)?

Point K should be moved to (4, 9).

3. Find the orthocenter P in the triangle.

Example 4 **Prove a property of isosceles triangles**

Prove that the altitude to the base of an isosceles triangle is a median.

Solution

Given $\triangle ABC$ is isosceles, with base AC. \overline{BD} is the altitude to base AC.

Prove \overline{BD} is a median of $\triangle ABC$.

Proof Legs AB and CD of \triangle ABC are congruent. \angle ADB and $\angle CDB$ are congruent right angles because BD is the altitude to AC. Also, $BD \cong BD$. Therefore, $\triangle ADB \cong \triangle CDB$ by the HL Congruence Theorem .

 $\overline{AD} \cong \overline{CD}$ because corresponding parts of congruent triangles are congruent. So, D is the midpoint of AC by definition. Therefore, BD intersects AC at its midpoint. and *BD* is a median of $\triangle ABC$.

Checkpoint Complete the following exercise.

4. Prove that the altitude *BD* in Example 4 is also an angle bisector.

Proof Legs AB and CB of $\triangle ABC$ are congruent. $\angle ADB$ and $\angle CDB$ are congruent right angles because BD is the altitude to AC. Also, $BD \cong BD$. Therefore, $\triangle ADB \cong \triangle CDB$ by the HL Congruence Theorem. $\angle ABD \cong \angle CBD$ because corresponding parts of congruent triangles are congruent. Therefore, BD bisects $\angle ABC$, and BD is an angle bisector.

Homework