Ratios, Proportions, and the **Geometric Mean**

Goal • Solve problems by writing and solving proportions.

Your Notes

VOCABULARY

Ratio of a to b If a and b are two numbers or quantities and $b \neq 0$, then the ratio of a to b is $\frac{a}{b}$.

Proportion An equation that states that two ratios are equal is a proportion.

Means, extremes In the proportion $\frac{\partial}{\partial b} = \frac{C}{C'}$ b and c are the means, and a and d are the extremes.

Geometric mean The geometric mean of two positive numbers a and b is the positive number x that satisfies $\frac{\partial}{\partial x} = \frac{X}{h}$.

Example 1

Simplify ratios

Simplify the ratio. (See Table of Measures, p. 921)

a. 76 cm:8 cm

Solution

a. Write 76 cm:8 cm as . Then divide out the 8 cm units and simplify.

For help with conversion factors, see p. 886.

$$\frac{76 \text{ cm}}{8 \text{ cm}} = \frac{19}{2} = \underline{19} : \underline{2}$$

b. To simplify a ratio with unlike units, multiply by a conversion factor.

$$\frac{4 \text{ ft}}{24 \text{ in.}} = \frac{4 \text{ ft}}{24 \text{ in.}} \cdot \frac{12 \text{ in.}}{1 \text{ ft}} = \frac{48}{24} = \frac{2}{1}$$

Painting You are painting barn doors. You know that the perimeter of the doors is 64 feet and that the ratio of the length to the height is 3:5. Find the area of the doors.

Solution

Step 1 Write expressions for the length and height. Because the ratio of the length to height is 3:5, you can represent the length by $3 \times x$ and the height by 5 x.

Step 2 Solve an equation to find x.

 $2\ell + 2w = P$ Formula for perimeter 2(3 x) + 2(5 x) = 64 Substitute. 16 x = 64 Multiply and combine like terms. x = 4Divide each side by 16.

Step 3 Evaluate the expressions for the length and height. Substitute the value of *x* into each expression.

> **Length:** 3 x = 3 (4) = 12Height: 5 x = 5 (4) = 20

The doors are 12 feet long and 20 feet high, so the area is $12 \cdot 20 = 240 \text{ ft}^2$.

Checkpoint In Exercises 1 and 2, simplify the ratio.

1. 4 meters to 18 meters **2.** 33 yd:9 ft 11:1 2 to 9

3. The perimeter of a rectangular table is 21 feet and the ratio of its length to its width is 5:2. Find the length and width of the table.

length: 7.5 feet, width: 3 feet

The measures of the angles in \triangle BCD are in the extended ratio of 2:3:4. Find the measures of the angles.

Solution

Begin by sketching the triangle. Then use the extended ratio of 2:3:4 to label the measures as $2 x^{\circ}$, $3 x^{\circ}$, and $4 x^{\circ}$.

$$2x^{\circ} + 3x^{\circ} + 4x^{\circ} = 180^{\circ}$$
 Triangle Sum Theorem
 $9x = 180$ Combine like terms.

$$x = \underline{20}$$
 Divide each side by $\underline{9}$.

The angle measures are
$$2(\underline{20^{\circ}}) = \underline{40^{\circ}}$$
, $3(\underline{20^{\circ}}) = \underline{60^{\circ}}$, and $4(\underline{20^{\circ}}) = \underline{80^{\circ}}$.

Checkpoint Complete the following exercise.

4. A triangle's angle measures are in the extended ratio of 1:4:5. Find the measures of the angles.

A PROPERTY OF PROPORTIONS

1. Cross Products Property In a proportion, the product of the extremes equals the product of the means.

If
$$\frac{a}{b} = \frac{c}{d}$$
 where $b \neq 0$ and $d \neq 0$, then $\underline{ad} = \underline{bc}$.

$$\frac{2}{3} = \frac{4}{6}$$
 $3 \cdot \underline{4} = \underline{12}$ $2 \cdot \underline{6} = \underline{12}$

Your Notes

Example 4 Solve proportions

Solve the proportion.

In part (a), you could multiply each side by the denominator, 16.

$$16 \cdot \frac{3}{4} = 16 \cdot \frac{x}{16}$$

 $\frac{3}{4} = \frac{x}{16}$

$$3 \cdot \underline{16} = \underline{4} \cdot x \qquad \text{Cross Proof}$$

$$\underline{48} = \underline{4} x \qquad \text{Multiply.}$$

$$12 = x$$

$$\mathbf{b.} \quad \frac{3}{x+1} = \frac{2}{x}$$

3 •
$$x = 2(x + 1)$$
 Cross Products Property

3 $x = 2x + 2$ Distributive Property

 $x = 2$ Subtract $2x$ from each side.

$$x = 2$$

Original proportion

Cross Products Property

Divide each side by 4.

Original proportion

Example 5 Solve a real-world problem

Bowling You want to find the total number of rows of boards that make up 24 lanes at a bowling alley. You know that there are 117 rows in 3 lanes. Find the total number of rows of boards that make up the 24 lanes.

Solution

Write and solve a proportion involving two ratios that compare the number of rows with the number of lanes.

$$\frac{117}{3} = \frac{\cancel{n}}{24} \leftarrow \text{number of rows}$$

Write proportion.

Cross Products Property

$$936 = n$$

Simplify.

There are 936 rows of boards that make up the 24 lanes.

GEOMETRIC MEAN

The geometric mean of two positive numbers a and b is the positive number x that satisfies $\frac{a}{x} = \frac{x}{h}$.

So,
$$x^2 = \underline{ab}$$
 and $x = \sqrt{\underline{ab}}$.

Find the geometric mean of 16 and 48.

Solution

$$x = \sqrt{ab}$$
 Definition of geometric mean
$$= \sqrt{16 \cdot 48}$$
 Substitute 16 for a and 48 for b.
$$= \sqrt{16 \cdot 16 \cdot 3}$$
 Factor.
$$= 16\sqrt{3}$$
 Simplify.

The geometric mean of 16 and 48 is $16\sqrt{3} \approx 27.7$.

Checkpoint Complete the following exercises.

5. Solve
$$\frac{8}{y} = \frac{2}{5}$$
. $y = 20$

6. Solve
$$\frac{x-3}{3} = \frac{2x}{9}$$
.

7. A small gymnasium contains 10 sets of bleachers. You count 192 spectators in 3 sets of bleachers and the spectators seem to be evenly distributed. Estimate the total number of spectators.

about 640 spectators

8. Find the geometric mean of 14 and 16.

 $4\sqrt{14} \approx 15.0$

Homework