Use Properties of Parallelograms

Goal • Find angle and side measures in parallelograms.

Your Notes

VOCABULARY

Parallelogram A parallelogram is a quadrilateral with both pairs of opposite sides parallel.

THEOREM 8.3

If a quadrilateral is a parallelogram, then its opposite sides are congruent.

If PQRS is a parallelogram, then $\overline{PQ} \cong \overline{RS}$ and $\overline{QR} \cong \overline{PS}$.

THEOREM 8.4

If a quadrilateral is a parallelogram, then its opposite angles are congruent.

If PQRS is a parallelogram, then

$$\angle P \cong \underline{\angle R}$$
 and $\underline{\angle Q} \cong \angle S$.

Example 1

Use properties of parallelograms

Find the values of x and y.

Solution

FGHJ is a parallelogram by the definition of a parallelogram. Use Theorem 8.3 to find the value of x.

$$FG = HJ$$
 Opposite sides of a \square are \cong .

$$x + 6 = 13$$
 Substitute $x + 6$ for FG and 13 for HJ .

$$x = 7$$
 Subtract 6 from each side.

By Theorem 8.4,
$$\angle F \cong \underline{\angle H}$$
, or $m \angle F = \underline{m \angle H}$. So, $v^{\circ} = 68^{\circ}$.

$$y^{\circ} = \underline{68^{\circ}}$$
.
In \Box FGHJ, $x = \underline{7}$ and $y = \underline{68}$.

Your Notes

THEOREM 8.5

If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.

If PQRS is a parallelogram, then $x^{\circ} + y^{\circ} = 180^{\circ}$.

Use properties of a parallelogram Example 2

Gates As shown, a gate contains several parallelograms. Find $m\angle ADC$ when $m \angle DAB = 65^{\circ}$.

Solution

By Theorem 8.5, the consecutive angle pairs in $\square ABCD$ are supplementary . So, $m\angle ADC + m\angle DAB = 180^{\circ}$. Because $m\angle DAB = 65^{\circ}$, $m \angle ADC = 180^{\circ} - 65^{\circ} = 115^{\circ}$.

$$x = 20$$

$$y = 123$$

3. z

$$z = 57$$

Your Notes

THEOREM 8.6

If a quadrilateral is a parallelogram, then its diagonals bisect each other.

$$\overline{QM}\cong \overline{SM}$$
 and $\overline{PM}\cong \overline{RM}$

Use properties of a parallelogram Example 3

The diagonals of *□*STUV intersect at point W. Find the coordinates of W.

Solution

By Theorem 8.6, the diagonals of a parallelogram bisect each other.

So, W is the midpoint of the diagonals \overline{TV} and \overline{SU} . Use the Midpoint Formula.

Coordinates of midpoint W of

$$\overline{SU} = \left(\begin{array}{c} 6+0 \\ \hline 2 \end{array}, \begin{array}{c} 5+0 \\ \hline 2 \end{array} \right) = \left(\begin{array}{c} 3, \frac{5}{2} \end{array} \right)$$

coordinates of W. Using \overline{SU} simplifies calculations because one endpoint is (0, 0).

In Example 3, you

diagonal to find the

can use either

Checkpoint Complete the following exercises.

4. The diagonals of $\square VWXY$ intersect at point Z. Find the coordinates of Z.

$$\mathbb{Z}\left(\frac{7}{2},3\right)$$

Homework

5. Given that \Box *FGHJ* is a parallelogram, find MH and FH.

$$MH = 5$$
, $FH = 10$