Properties of Rhombuses, **Rectangles, and Squares**

Goal • Use properties of rhombuses, rectangles, and squares.

Your Notes

VOCABULARY

Rhombus A rhombus is a parallelogram with four congruent sides.

Rectangle A rectangle is a parallelogram with four right angles.

Square A square is a parallelogram with four congruent sides and four right angles.

RHOMBUS COROLLARY

A quadrilateral is a rhombus if and only if it has four congruent sides.

ABCD is a rhombus if and only if $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$.

RECTANGLE COROLLARY

A quadrilateral is a rectangle if and only if it has four right angles.

ABCD is a rectangle if and only if $\angle A$, $\angle B$, $\angle C$, and $\angle D$ are right angles.

SQUARE COROLLARY

A quadrilateral is a square if and only if it is a rhombus and a rectangle.

ABCD is a square if and only if $AB \cong BC \cong CD \cong AD$ and $\angle A$, $\angle B$, $\angle C$, and $\angle D$ are right angles.

Your Notes

Example 1

Use properties of special quadrilaterals

For any rhombus RSTV, decide whether the statement is always or sometimes true. Draw a sketch and explain your reasoning.

a.
$$\angle S \cong \angle V$$

b.
$$\angle T \cong \angle V$$

Solution

a. By definition, a rhombus is a parallelogram with four congruent sides . By Theorem 8.4, opposite angles of a parallelogram are congruent . So, $\angle S \cong \angle V$. The statement is always true.

b. If rhombus *RSTV* is a **square**, then all four angles are congruent right angles. So $\angle T \cong \angle V$ if RSTV is a square . Because not all rhombuses are also squares, the statement is sometimes true.

Example 2

Classify special quadrilaterals

Classify the special quadrilateral. Explain your reasoning.

The quadrilateral has four congruent sides. One of the angles is not a right angle, so the rhombus is not also a square . By the Rhombus Corollary, the quadrilateral is a rhombus.

1. For any square CDEF, is it always or sometimes true that $CD \cong DE$? Explain your reasoning.

Always; a square has four congruent sides.

2. A quadrilateral has four congruent sides and four congruent angles. Classify the quadrilateral.

square

Your Notes

THEOREM 8.11

A parallelogram is a rhombus if and only if its diagonals are perpendicular.

 $\square ABCD$ is a rhombus if and only if $AC \perp BD$.

THEOREM 8.12

A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.

□ ABCD is a rhombus if and only if AC bisects \angle *BCD* and \angle *BAD* and \overline{BD} bisects \angle *ABC* and \angle *ADC*.

THEOREM 8.13

A parallelogram is a rectangle if and only if its diagonals are congruent.

□ ABCD is a rectangle if and only if $AC \cong BD$.

List properties of special parallelograms Example 3

Sketch rhombus FGHJ. List everything you know about it.

Solution

By definition, you need to draw a figure with the following properties:

- The figure is a parallelogram.
- The figure has four congruent sides.

Because *FGHJ* is a parallelogram, it has these properties:

- Opposite sides are parallel and congruent.
- Opposite angles are congruent . Consecutive angles are supplementary.
- Diagonals bisect each other.

By Theorem 8.11, the diagonals of FGHJ are perpendicular . By Theorem 8.12, each diagonal bisects a pair of opposite angles.

Your Notes

Example 4

Solve a real-world problem

Framing You are building a frame for a painting. The measurements of the frame are shown at the right.

- a. The frame must be a rectangle. Given the measurements in the diagram, can you assume that it is? Explain.
- **b.** You measure the diagonals of the frame. The diagonals are about 25.6 inches. What can you conclude about the shape of the frame?

Solution

- a. No, you cannot. The boards on opposite sides are the same length, so they form a parallelogram. But you do not know whether the angles are right angles .
- **b.** By Theorem 8.13, the diagonals of a rectangle are congruent . The diagonals of the frame are congruent, so the frame forms a rectangle.

Checkpoint Complete the following exercises.

3. Sketch rectangle WXYZ. List everything that you know about it.

WXYZ is a parallelogram with four right angles. Opposite sides are parallel and congruent. Opposite angles are congruent and consecutive angles are supplementary. The diagonals are congruent and bisect each other.

- Homework
- 4. Suppose the diagonals of the frame in Example 4 are not congruent.

Could the frame still be a rectangle? Explain.

No; by Theorem 8.13, a rectangle must have congruent diagonals.