8.5 Use Properties of Trapezoids and Kites

Goal • Use properties of trapezoids and kites.

Your Notes

VOCABULARY

Trapezoid A trapezoid is a quadrilateral with exactly one pair of parallel sides.

Bases of a trapezoid The parallel sides of a trapezoid are the bases.

Base angles of a trapezoid A trapezoid has two pairs of base angles. Each pair shares a base as a side.

Legs of a trapezoid The nonparallel sides of a trapezoid are the legs.

Isosceles trapezoid An isosceles trapezoid is a trapezoid in which the legs are congruent.

Midsegment of a trapezoid The midsegment of a trapezoid is the segment that connects the midpoints of its legs.

Kite A kite is a quadrilateral that has two pairs of consecutive congruent sides, but opposite sides are not congruent.

Example 1

Use a coordinate plane

Show that CDEF is a trapezoid.

Solution

Compare the slopes of opposite sides.

Slope of
$$\overline{DE} = \frac{4-3}{4-1} = \frac{1}{3}$$

Slope of
$$\overline{CF} = \frac{2-0}{6-0} = \frac{2}{6} = \frac{1}{3}$$

The slopes of \overline{DE} and \overline{CF} are the same, so \overline{DE} \overline{CF} .

Slope of
$$\overline{EF} = \frac{2-4}{6-4} = \frac{-2}{2} = \underline{-1}$$

Slope of
$$\overline{CD} = \frac{3-0}{1-0} = \frac{3}{1} = \underline{3}$$

The slopes of \overline{EF} and \overline{CD} are not the same, so \overline{EF} is not parallel to \overline{CD} .

Because quadrilateral CDEF has exactly one pair of parallel sides, it is a trapezoid.

THEOREM 8.14

If a trapezoid is isosceles, then each pair of base angles is congruent.

D(1, 3)

E(4, 4)

F(6, 2)

If trapezoid ABCD is isosceles, then $\angle A \cong \angle D$ and $\angle B \cong \angle C$.

THEOREM 8.15

If a trapezoid has a pair of congruent base angles, then it is an isosceles trapezoid.

If $\angle A \cong \angle D$ (or if $\angle B \cong \angle C$), then trapezoid ABCD is isosceles.

THEOREM 8.16

A trapezoid is isosceles if and only if its diagonals are congruent.

Trapezoid ABCD is isosceles if and only if $\overline{AC} \cong \overline{BD}$.

Example 2

Use properties of isosceles trapezoids

Kitchen A shelf fitting into a cupboard in the corner of a kitchen is an isosceles trapezoid. Find $m \angle N$, $m \angle L$, and $m \angle M$.

Solution

- **Step 1 Find** $m \angle N$. *KLMN* is an isosceles trapezoid, so $\angle N$ and $\angle K$ are congruent base angles, and $m \angle N = m \angle K = 50^{\circ}$.
- **Step 2 Find** $m \angle L$. Because $\angle K$ and $\angle L$ are consecutive interior angles formed by KL intersecting two parallel lines, they are supplementary. So, $m\angle L = 180^{\circ} - 50^{\circ} = 130^{\circ}$.
- **Step 3 Find** $m \angle M$. Because $\angle M$ and $\angle \angle$ are a pair of base angles, they are congruent, and $m \angle M = m \angle L = 130^{\circ}$.

So, $m \angle N = 50^{\circ}$, $m \angle L = 130^{\circ}$, and $m \angle M = 130^{\circ}$.

Checkpoint Complete the following exercises.

1. In Example **1**, suppose the coordinates of point *E* are (7, 5). What type of quadrilateral is CDEF? Explain.

Parallelogram; opposite pairs of sides are parallel.

2. Find $m \angle C$, $m \angle A$, and $m \angle D$ in the trapezoid shown.

> $m \angle C = 135^{\circ}$, $m \angle A = 45^{\circ}$. $m \angle D = 45^{\circ}$

THEOREM 8.17: MIDSEGMENT THEOREM FOR **TRAPEZOIDS**

The midsegment of a trapezoid is parallel to each base and its length is one half the sum of the lengths of the bases.

If MN is the midsegment of trapezoid ABCD, then

$$\overline{MN} \parallel \overline{AB}$$
, $\overline{MN} \parallel \overline{DC}$, and $\overline{MN} = \frac{1}{2} (\underline{AB} + \underline{CD})$.

Example 3

Use the midsegment of a trapezoid

In the diagram, \overline{MN} is the midsegment of trapezoid PQRS. Find MN.

Solution

Use Theorem 8.17 to find MN.

$$MN = \frac{1}{2} (\underline{PQ} + \underline{SR})$$
 Apply Theorem 8.17.

$$= \frac{1}{2} (\underline{16} + \underline{9})$$
 Substitute $\underline{16}$ for PQ and $\underline{9}$ for SR .

$$= \underline{12.5}$$
 Simplify.

The length MN is 12.5 inches.

Checkpoint Complete the following exercise.

3. Find *MN* in the trapezoid at the right.

THEOREM 8.18

If a quadrilateral is a kite, then its diagonals are perpendicular.

If quadrilateral *ABCD* is a kite, then $\overline{AC} \perp \overline{BD}$.

THEOREM 8.19

If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent.

If quadrilateral *ABCD* is a kite and $\overline{BC} \cong \overline{BA}$, then $\angle A \cong \angle C$ and $\angle B \not\cong \angle D$.

Example 4

Apply Theorem 8.19

Find $m \angle T$ in the kite shown at the right. $a_{\sqrt{70^{\circ}}}$

Solution

By Theorem 8.19, *QRST* has exactly one pair of congruent opposite angles.

Because $\angle Q \not\cong \angle S$, $\angle R$ and $\angle T$ must be congruent. So, $m \angle R = m \angle T$. Write and solve an equation to find $m \angle T$.

$$m\angle T + m\angle R + \underline{70^{\circ}} + \underline{88^{\circ}} = \underline{360^{\circ}}$$

Corollary to Theorem 8.1

$$m \angle T + m \angle T + \underline{70^{\circ}} + \underline{88^{\circ}} = \underline{360^{\circ}}$$

Substitute $m \angle T$ for $m \angle R$.

$$2 (m \angle T) + 158^{\circ} = 360^{\circ}$$

Combine like terms.

$$m \angle T = 101^{\circ}$$

Solve for $m \angle T$.

Homework

Checkpoint Complete the following exercise.

4. Find $m \angle G$ in the kite shown at the right.

 $m \angle G = 100^{\circ}$

