8.6 Identify Special Quadrilaterals

Identify special quadrilaterals.

Your Notes

Example 1 **Identify quadrilaterals**

Quadrilateral ABCD has both pairs of opposite sides congruent. What types of quadrilaterals meet this condition?

Solution

There are many possibilities.

Rhombus Square

Opposite sides are congruent.

All sides are congruent.

Checkpoint Complete the following exercise.

1. Quadrilateral *JKLM* has both pairs of opposite angles congruent. What types of quadrilaterals meet this condition?

parallelogram, rectangle, square, rhombus

In Example 2, ABCD is shaped like a square. But you must rely only on marked information when you interpret a diagram.

Example 2

Identify a quadrilateral

What is the most specific name for quadrilateral ABCD?

Solution

The diagram shows that both pairs of opposite sides are congruent. By Theorem 8.7, ABCD is a parallelogram. All sides are congruent, so *ABCD* is a **rhombus** by definition.

Squares are also rhombuses. However, there is no information given about the angle measures of ABCD. So, you cannot determine whether it is a square.

Your Notes

Example 3

Identify a quadrilateral

Is enough information given in the diagram to show that quadrilateral FGHJ is an isosceles trapezoid? Explain.

Solution

- **Step 1 Show** that *FGHJ* is a trapezoid . $\angle G$ and $\angle H$ are supplementary but $\angle F$ and $\angle G$ are not. So, $FG \parallel HJ$, but \overline{FJ} is not parallel to \overline{GH} . By definition, FGHJ is a trapezoid.
- **Step 2 Show** that trapezoid *FGHJ* is isosceles $. \angle F$ and $\angle G$ are a pair of congruent base angles . So, FGHJ is an isosceles trapezoid by Theorem 8.15.

Yes, the diagram is sufficient to show that FGHJ is an isosceles trapezoid.

Checkpoint Complete the following exercises.

2. What is the most specific name for quadrilateral QRST? Explain your reasoning.

Kite; there are two pairs of consecutive congruent sides.

3. Is enough information given in the diagram to show that quadrilateral BCDE is a rectangle? Explain.

Yes; you know that $m \angle D = 90^{\circ}$ by the Triangle Sum Theorem. Both pairs of opposite angles are congruent, so BCDE is a parallelogram by Theorem 8.8. By definition, *BCDE* is a rectangle.

