Perform Rotations

Goal • Rotate figures about a point.

Your Notes

VOCABULARY

Center of rotation In a rotation, a figure is turned about a fixed point called the center of rotation.

Angle of rotation In a rotation, rays drawn from the center of rotation to a point and its image form the angle of rotation.

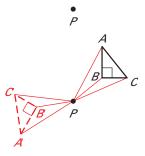
Example 1

Draw a rotation

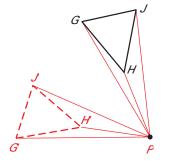
Draw a 150° rotation of $\triangle ABC$ about P.

Solution

- **Step 1 Draw** a segment from A to P.
- Step 2 Draw a ray to form a 150° angle with PA.
- **Step 3 Draw** A' so that PA' = PA.
- **Step 4 Repeat Steps 1–3 for each** vertex. Draw $\triangle A'B'C'$.



- **Checkpoint** Complete the following exercise.
 - 1. Draw a 60° rotation of \triangle GHJ about P.

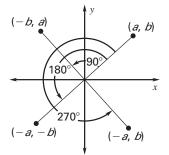


Your Notes

COORDINATE RULES FOR ROTATIONS ABOUT THE ORIGIN

When a point (a, b) is rotated counterclockwise about the origin, the following are true:

- **1.** For a rotation of 90°, $(a, b) \rightarrow (-b, a)$.
- **2.** For a rotation of 180°, $(a, b) \rightarrow (-a, -b)$.
- **3.** For a rotation of 270°, $(a, b) \rightarrow (b, -a)$.



Example 2

Rotate a figure using the coordinate rules

Graph quadrilateral *KLMN* with vertices K(3, 2), L(4, 2), M(4, -3), and N(2, -1). Then rotate the quadrilateral 270° about the origin.

Solution

Graph *KLMN*. Use the coordinate rule for a 270° rotation to find the images of the vertices.

$$(a, b) \rightarrow (b, -a)$$

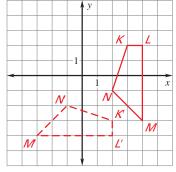
$$K(3,2) \rightarrow K'(2,-3)$$

$$L(4, 2) \rightarrow L'(2, -4)$$

$$M(4, -3) \rightarrow M'(\underline{-3}, \underline{-4})$$

$$N(2, -1) \rightarrow N'(-1, -2)$$

Graph the image K'L'M'N'.



Checkpoint Complete the following exercise.

2. Graph *KLMN* in Example 2. Then rotate the quadrilateral 90° about the origin.

Your Notes

Notice that a 360° rotation returns the figure to its original position. The matrix that represents this rotation is called the identity matrix.

Because matrix multiplication is

not commutative, always write the

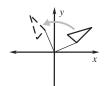
matrix.

rotation matrix first, then the polygon

ROTATION MATRICES (COUNTERCLOCKWISE)

90° rotation

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$



180° rotation

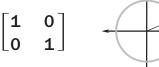
$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

270° rotation

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$



360° rotation



Example 3 Use matrices to rotate a figure

Trapezoid DEFG has vertices D(-1, 3), E(1, 3), F(2, 1), and G(1, 0). Find the image matrix for a 180° rotation of DEFG about the origin. Graph DEFG and its image.

Solution

Step 1 Write the polygon matrix: $\begin{bmatrix} -1 & 1 & 2 & 1 \\ 3 & 3 & 1 & 0 \end{bmatrix}$

Step 2 Multiply by the matrix for a 180° rotation.

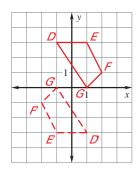
$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 2 & 1 \\ 3 & 3 & 1 & 0 \end{bmatrix} = \begin{bmatrix} D' & E' & F' & G' \\ -3 & -1 & -2 & -1 \\ -3 & -3 & 1 & 0 \end{bmatrix}$$

Rotation matrix

Polygon matrix

Image matrix

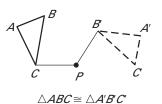
Step 3 Graph the preimage *DEFG*. Graph the image D'E'F'G'.



Your Notes

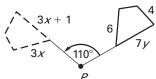
THEOREM 9.3: ROTATION THEOREM

A rotation is an isometry.



Example 4 Find side lengths in a rotation

The quadrilateral is rotated about P. Find the value of y.



Solution

By Theorem 9.3, the rotation is an isometry, so corresponding side lengths are equal. Then 3x = 6, so x = 2. Now set up an equation to solve for y.

$$y = 3x + 1$$
 Corresponding lengths in an isometry are equal.

Checkpoint Complete the following exercises.

3. Use the quadrilateral in Example 3. Find the image matrix after a 270° rotation about the origin.

$$\begin{bmatrix}
D & E & F & G' \\
3 & 3 & 1 & 0 \\
1 & -1 & -2 & -1
\end{bmatrix}$$

Homework

4. The triangle is rotated about *P*. Find the value of b.

$$b = 4$$

