9.5 Apply Compositions of **Transformations**

 Perform combinations of two or more transformations.

Your Notes

VOCABULARY

Glide reflection A glide reflection is a transformation in which every point Pis mapped to a point P'' by the following steps:

- (1) A translation maps *P* onto *P*.
- (2) A reflection in a line k parallel to the direction of the translation maps P' to P".

Composition of transformations When two or more transformations are combined to form a single transformation, the result is a composition of transformations.

Example 1

Find the image of a glide reflection

The vertices of $\triangle ABC$ are A(2, 1), B(5, 3), and C(6, 2). Find the image of $\triangle ABC$ after the glide reflection.

Translation: $(x, y) \rightarrow (x - 8, y)$

Reflection: in the *x*-axis

The line of reflection must be parallel to the direction of the translation to be a glide reflection.

Solution

Begin by graphing $\triangle ABC$. Then graph $\triangle A'B'C'$ after a translation 8 units left . Finally, graph $\triangle A''B''C''$ after a reflection in the x-axis.



Your Notes

THEOREM 9.4: COMPOSITION THEOREM

The composition of two (or more) isometries is an isometry.

Example 2

Find the image of a composition

The endpoints of \overline{CD} are C(-2, 6) and D(-1, 3). Graph the image of \overline{CD} after the composition.

Unless you are told otherwise, do the transformations in the order given.

Reflection: in the y-axis

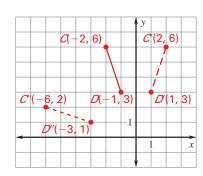
Rotation: 90° about the origin

Solution

Step 1 Graph \overline{CD} .

Step 2 Reflect \overline{CD} in the y-axis. $\overline{C'D'}$ has endpoints $C'(\underline{2},\underline{6})$ and $D'(\underline{1},\underline{3})$.

Step 3 Rotate $\overline{C'D'}$ 90° about the origin. $\overline{C''D''}$ has endpoints $C''(\underline{-6},\underline{2})$ and $D''(\underline{-3},\underline{1})$.

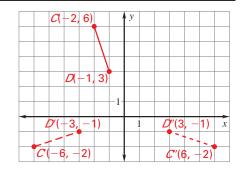


Checkpoint Complete the following exercises.

1. Suppose $\triangle ABC$ in Example 1 is translated 5 units down, then reflected in the *y*-axis. What are the coordinates of the vertices of the image?

$$A''(-2, -4), B''(-5, -2), C''(-6, -3)$$

2. Graph *CD* from Example 2. Do the rotation first, followed by the reflection.



Your Notes

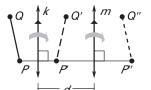
THEOREM 9.5: REFLECTIONS IN PARALLEL **LINES THEOREM**

If lines k and m are parallel, then a reflection in line k followed by a reflection in line m is the same as

a translation.

If P'' is the image of P, then:

- **1.** $\overline{PP''}$ is perpendicular to k and m, and
- **2.** PP'' = 2d, where d is the distance between k and m.



Example 3

Use Theorem 9.5

In the diagram, a reflection in line k maps GF to G'F'. A reflection in line m maps G'F' to G''F''. Also, FA = 6and DF'' = 3.

- a. Name any segments congruent to each segment: GF, FA, and GB.
- **b.** Does AD = BC? Explain.
- c. What is the length of $\overline{GG''}$?

- **b.** Yes, AD = BC because $\overline{GG''}$ and $\overline{FF''}$ are perpendicular to both k and m, so \overline{BC} and \overline{AD} are opposite sides of a rectangle.
- **c.** By the properties of reflections, F'A = 6 and F'D = 3. Theorem 9.5 implies that $GG'' = FF'' = 2 \cdot AD$, so the length of $\overline{GG''}$ is 2(6 + 3), or 18 units.

Checkpoint Complete the following exercise.

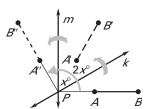
3. In Example 3, suppose you are given that BC = 10and G'F' = 6. What is the perimeter of quadrilateral GG"F"F?

52 units

Your Notes

THEOREM 9.6: REFLECTIONS IN INTERSECTING **LINES THEOREM**

If lines k and m intersect at point P, then a reflection in k followed by a reflection in m is the same as a rotation about P.

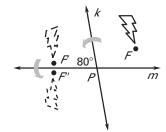


The angle of rotation is $2x^{\circ}$, where x° is the measure of the acute or right angle formed by k and m.

Example 4

Use Theorem 9.6

In the diagram, the figure is reflected in line k. The image is then reflected in line m. **Describe a single transformation** that maps F to F''.



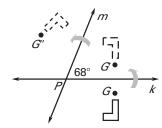
Solution

The measure of the acute angle formed between lines k and m is 80° . So, by Theorem 9.6, a single transformation that maps F to F'' is a 160° rotation about point P.

You can check that this is correct by tracing lines k and m and point F, then rotating the point 160° .

Checkpoint Complete the following exercise.

4. In the diagram below, the preimage is reflected in line k, then in line m. Describe a single transformation that maps G to G".



136° rotation about point P

Homework