Use Properties of Tangents

Goal • Use properties of a tangent to a circle.

Your Notes

VOCABULARY

Circle A circle is the set of all points in a plane that are equidistant from a given point.

Center The center of a circle is the point from which all points of the circle are equidistant.

Radius A segment from the center of a circle to any point on the circle is a radius.

Chord A chord is a segment whose endpoints are on a circle.

Diameter A diameter is a chord that contains the center of the circle.

Secant A secant is a line that intersects a circle in two points.

Tangent A tangent is a line in the plane of a circle that intersects the circle in exactly one point.

Example 1

Identify special segments and lines

Tell whether the line, ray, or segment is best described as a radius, chord, diameter, secant, or tangent of \odot C.

b. \overrightarrow{EA}

c. DÉ

Solution

- a. BC is a radius because C is the center and B is a point on the circle.
- **b.** EA is a secant because it is a line that intersects the circle in two points.
- c. DE is a tangent ray because it is contained in a line that intersects the circle at only one point.

Example 2

Find lengths in circles in a coordinate plane

Use the diagram to find the given lengths.

- a. Radius of ⊙A
- **b.** Diameter of ⊙A
- **c.** Radius of $\odot B$
- **d.** Diameter of $\odot B$

Solution

- a. The radius of $\bigcirc A$ is 2 units.
- **b.** The diameter of $\bigcirc A$ is 4 units.
- **c.** The radius of $\odot B$ is 4 units.
- **d.** The diameter of $\odot B$ is 8 units.

Checkpoint Complete the following exercises.

1. In Example 1, tell whether \overline{AB} is best described as a radius, chord, diameter, secant, or tangent. Explain.

AB is a diameter because it is a chord that contains the center C.

2. Use the diagram to find (a) the radius of $\odot C$ and (b) the diameter of $\odot D$.

- (a) The radius of $\odot C$ is 3 units.
- (b) The diameter of $\odot D$ is 2 units.

Example 3

Draw common tangents

Tell how many common tangents the circles have and draw them.

a.

Solution

a. 3 common tangents

b. 2 common tangents

c. 1 common tangent

Checkpoint Tell how many common tangents the circles have and draw them.

no common tangents

4 common tangents

THEOREM 10.1

In a plane, a line is tangent to a circle if and only if the line is perpendicular to a radius of the circle at its endpoint on the circle.

Your Notes

Example 4

Verify a tangent to a circle

In the diagram, \overline{RS} is a radius of $\bigcirc R$. Is ST tangent to $\bigcirc R$?

Solution

Use the Converse of the Pythagorean Theorem. Because $10^2 + 24^2 = 26^2$, $\triangle RST$ is a right triangle and $\overline{RS} \perp \underline{\overline{ST}}$. So, $\underline{\overline{ST}}$ is perpendicular to a radius of $\odot R$ at its endpoint on $\bigcirc R$. By Theorem 10.1, \overline{ST} is tangent to $\odot R$.

Checkpoint \overline{RS} is a radius of $\odot R$. Is \overline{ST} tangent to $\odot R$?

Yes

No

Find the radius of a circle Example 5

In the diagram, B is a point of tangency. Find the radius r of \odot C.

Solution

You know from Theorem 10.1 that $\overline{AB} \perp \overline{BC}$, so $\triangle ABC$ is a right triangle. You can use the Pythagorean Theorem.

$$AC^2 = BC^2 + AB^2$$

$$(r+49)^2 = r^2 + 77^2$$

$$r^2 + \underline{98} r + \underline{2401} = r^2 + \underline{5929}$$

 $\underline{98} r = \underline{3528}$

Subtract from each side.

Multiply.

Substitute.

Pythagorean Theorem

$$r = 36$$

Divide each side by 98.

Your Notes

THEOREM 10.2

Tangent segments from a common external point are congruent.

Example 6

Use Theorem 10.2

 \overline{QR} is tangent to $\bigcirc C$ at R and \overline{QS} is tangent to $\bigcirc C$ at S. Find the value of x.

Solution

Checkpoint Complete the following exercises.

7. In the diagram, K is a point of tangency. Find the radius r of $\odot L$.

r = 33

8. \overline{RS} is tangent to $\bigcirc C$ at S and \overline{RT} is tangent to $\bigcirc C$ at T. Find the value(s) of x.

 $x = \pm 7$