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PrefaeThis web-based series of letures on Numbers and Their Appliation to Math andSiene is the outgrowth of my work sine 1993 teahing high shool math to a seletgroup of students with very diverse bakgrounds. These students attend the BerrienCounty Math and Siene Center at Andrews University. It is assumed, somewhaterroneously, that all students have suessfully ompleted Algebra in eighth grade.All will be taking Geometry or higher in ninth and are expeted to omplete APCalulus AB by grade 12.Although these students represent about 1% of the area's high shool population,they are well distributed from the top 10% of the rural/small town population arossBerrien and Cass Counties. This series of letures serves to review basi numberonepts, apply these onepts to the mathematis and siene they will be studyingfor four years, and also lay a framework for ISEF/EXPO type projets in mathematis,espeially during their freshman year. Fundamental onepts essential to doing wellon ontests, like 0 being even, 1 not being prime, what omplex numbers and bases are,are reviewed/taught. Additional purposes inlude: foring students to study�manybreezed through grade shool without raking a book; separate out the aeleratedstudents (Algebra II, Prealulus); provide a referene booklet for years to ome. Assuh, some material is here for exposure only and not mastry.Historially, I was their only math teaher for four years of high shool math. Thishad both bene�ts and pitfalls. One of the major bene�ts was the ability to tailor oururriulum's timing and ontent to the siene and tehnology omponents of ourprogram. Another was the opportunity to introdue suh fundamental onepts ofslope, area, bases, proof, et. in suh a way as to ease the transition to Calulus.This is still being done by 1) a areful seletion and use of a variety of textbooks; 2)di�erent modes of homework usage; 3) seleted examples whih span a wide varietyof sub�elds of mathematis.The onsolidation of the Berrien County Math and Siene Center at AndrewsUniversity started in 1992�93, ontinued in 1997�98, and resulted in a target of 50students at one site, instead of 56�75 per grade level. Expansion to two setionsat eah grade level was ompleted in 2000�01, resulting in multiple mathematisteahers. The shedule ditated grade level setions to our onurrently. Assuringuniform delivery and overage was also a motivating fator in standarizing this ma-xi

http://www.sciserv.org/isef/
http://www.remc11.k12.mi.us/expo/


xii NUMBERS LESSON 0. PREFACEterial. However, in 2001�02, we started a return to one setion of 30 students pergrade level. This resulted in higher SAT sores (freshmen average over 1050) andthus emphasized the need to keep these students hallenged.Numbers are fundamental to the study of mathematis and siene. Their disov-ery (some insist invention) transformed man into rational beings. Conepts suh asratio, ontinuity, nth roots, signi�ant �gures, et. introdued early in our Introdu-tion to Statistis unit streth the ability of many of our students. This unit is thusdesigned to omplement the instrution given our lowest quartile students in SummerAlgebra and somewhat deouple the distration of these number onepts from thestudy of Statistis. In addition, students aelerating faster than our normal (and al-ready aelerated) program or those joining late (as Freshmen, Sophomores, and evenJuniors or Seniors) need this information whih is not well summarized elsewhere.In 2001�02 we stream-lined the homework by removing some arithmeti and al-gebra onepts overed in Summer Algebra so it better �ts within our 50± minute(55 Tue./Thu.; 45 Fri.) daily lass period. In 2006�07 we abandoned the web-pageapproah and typeset it in book form. We ontinue to larify essential onepts andgenerally improve the delivery.
1

I sinerely hope to onvey my lifelong passion for numbers as well. I �rmly believemathematis is a �interative� or partiipation sport. Although I don't expet toinstitute yphering mathes (like spelling bee's only doing alulations), lots of othersimilar ativities are planned to involve the students. A Chinese proverb states: �Ihear and forget, I see and remember, I do and understand.� Understanding is essentialfor a �rm foundation. Referenes suh as Google2 and Dr. Math3 are also essential.Sinerely, Keiθ or Keith the Complex number1http://www4.stat.nsu.edu/~bmasmith/images/all.gif2http://www.google.om/.3http://www.mathforum.om/dr.math.©MMIX Ke
iθ G. Calkins Otober 4, 2009 Numbers and Their App.�pdf 4

http://www4.stat.ncsu.edu/~bmasmith/images/all.gif
http://www.google.com/
http://www.google.com/
http://www.mathforum.com/dr.math
http://www.mathforum.com/dr.math


Numbers Lesson 0
0.1 Homework Graded on Day 21. Fill in the following table (3× 3) with the digits 1�9 (eah used and only one)in suh a way that eah row and olumn totals 15. You will reeive bonus pointsfor also having the diagonals so sum.

2. Below is a Sudoku but two by two using the digits 1�4 instead of the morepopular three by three version using the digits 1�9. The same rules apply. Nonumber may appear more than one in any given row, olumn, or two by twosmaller box. For one point eah digit, omplete the Sudoku below.24 123. Classify the books in your home six di�erent ways (example hard over, west-ern, text, et.) and ount or estimate how many (what perent) are in eahlassi�ation. Do they (the perentage) add up to how many books (100%)? Ifnot, why not.
1



2 NUMBERS LESSON 0. DAY 1 HOMEWORK4. A square number, or perfet square, is any number whih an be expressed asthe produt of a number multiplied with itself. For example, 9 = 3 × 3, 9 treesan be put into a square �gure:
• • •
• • •
• • •Using the set of digits 1, 6, 9, form as many square numbers as possible. Thedigits may be reused, suh as 11 and 966 (whih are not squares), to form largersquare numbers. (Bonus for more than �ve suh numbers.)Outline for Geometry, Wednesday, Sep. 9, 20091. 8:00: M�F: Geometry in SH100.2. Teaher: Keith Calkins, known as Dr. Keiθ.3. Pitures: not for publiation. Wear name tag ABOVE heart, right-side-up.4. Introdutions: learn everyone's name soon. Learn to speak loudly AND softly.5. Telephone: share number on list to be redistributed but not published.6. Noteard: �ll out personal information; return TODAY.7. Textbook: leave at home for referene until mid-Otober.8. Numbers: textbook handed out pieemeal. Do Homework 0 and read Le-ture 1 for tomorrow. Keep all and neat for binding.9. Notebook: organize notebook with orange notebook hek sheet at front. Pre-ferred format is 1" 3-ring binder.10. Course Outlines: ard stok yellow for notebook. Cherry, regular size for home.11. Syllabus: Get parent to sign ASAP. Math Help Sessions 7�9 pm Tuesdays after�rst week. Computer Help Sessions 7�9 pm Tuesdays and Wednesdays after�rst week. Computer helpers are Center graduates or seniors.12. Calulator: Get TI-nSpire or TI-84+ soon. Bring in proof of purhase seal.13. Handbooks: Distributed in Computers. Parents sign form.14. Forms: Turn in forms (medial, handbook, �eld trip, audio/video), if not donealready. Horseplay is not ondoned.©MMIX Ke
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Numbers Lesson 1All About SetsIn a small town where all the men are lean-shaven, the barber shaveseveryone who does not shave himself. Who shaves the barber?Barber's ParadoxIn this lesson we will explore the foundations of mathematis, spei�ally, sets,subsets, and their elements. It is di�ult to explain number without this fundamentalonept. First, however, we will have the �rst in our series of biographies of famousmathematiians.One of the goals of these letures is to provide familiarity with the great math-ematiians. Below we will make referene to Whitehead, Russell, Gödel, Eulid,Pythagoras, Venn, and Euler. In this �rst lesson we will start with one of the threegreatest mathematiians of all time: Arhimedes ( 287�212 b..). (. is an abbre-viation for the Latin word ira, meaning around.) Newton (1642�1727) and Gauss(1777�1855) will await subsequent lessons. Note that if there were a fourth greatestmathematiian, it would be Euler. Learning ommon Latin (and Greek) terms isanother goal.1.1 One of the Greatest Mathematiians: ArhimedesArhimedes was born, lived, and died in Syrause, Siily but studied at Alexandria(Egypt)�at that time the enter of learning. He is known as a mathematiian,sientist, and inventor, but his greatest ontributions were in geometry, suh as therelationship between the surfae area and volume of a sphere and its irumsribingylinder. He found lower and upper limits for pi: by insribing and irumsribing airle with a regular 96-gon. He invented engines of war (mirrors, atapults, et.) andthe water srew. The priniple of bouyany named after him helped him determinewhether or not a rown was pure gold�he streaked from the publi bath shouting�Eureka, Eureka,� or literally I found it, I found it. He is quoted as saying: �Give3



4 NUMBERS LESSON 1. ALL ABOUT SETSme a plae to stand and I will move the earth��meaning levers an do great feats.His methods of alulating areas in several ases were equivalent to alulus inventedmuh later. Some of his works were lost and not all the stories and books attributedto him are neessarily his. The author has done extensive researh on his attleproblem.1 Arhimedes was drawing geometri �gures in the sand when a Romansoldier, approahed. Arhimedes' last words were: �Do not disturb my irles," whenagainst spei� orders, the soldier fatally struk him.1.2 Sets, Elements, and SubsetsOne ditionary has, among the many de�nitions for set, the following:Set: a number of things naturally onneted by loation, formation, or order intime.Although set holds the reord as the word with the most ditionary de�nitions,there are terms mathematiians hoose to leave unde�ned, or atually, de�ned byusage. Set, element, member, and subset are four suh terms whih will be disussedin today's lesson. Today's ativity will also explore the onept of a set.Eah item in or inside a set is termed an element.The brae symbols �{� and �}� are used to enlose the elements in a set.Eah element is a member of the set (or belongs to the set).The symbol for membership is �∈�. It an be read �is an element of� and looksquite similar to the Greek letter epsilon (ǫ). Thus ǫ ∈ {α, β, γ, δ, ǫ}.A subset is a portion of a set.The symbol for subset is �⊂�. Some books allow and use it reversed (⊃)�we willnot.A superset is a set that inludes other sets.For example: If A ⊂ B, then A is a subset of B and B is a superset of A.A subset might have no members, in whih ase it is termed the null set or emptyset.The empty set is denoted either by {} or by ∅, a Norwegian letter. The null setis a subset of every set.Note: a ommon mistake is to use {∅} to denote the null set. This is atually aset with one element and that element is the null set. Sine some people slash their1 http://www.andrews.edu/~alkins/profess/attle.htm.©MMIX Ke
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1.2. SETS, ELEMENTS, AND SUBSETS 5zeroes, it is safest when handwriting to always use the notation {} to denote theempty or null set.A singleton is a set with only one element.A subset might ontain every member of the original set.In this ase it is termed an improper subset.A proper subset does not ontain every member of the original set.Sets may be �nite, {1, 2, 3, . . . , 10}, or in�nite, {1, 2, 3, . . .}. The ardinality ofa set A, n(A), is how many elements are in the set. The symbol �. . .� alled ellipsesmeans to ontinue in the indiated pattern. There are 2n subsets of any set, where nis the set's ardinality.Example: How many subsets does a set with three elements have?Solution: 23 = 8. Let the set be {A,B,C}. Then the subsets are: {}, {A}, {B},
{C}, {A,B}, {A,C}, {B,C}, and {A,B,C}. We will disuss the pattern made bythe number of subsets of eah ardinality in a later lesson.2The power set of a set is the omplete set of subsets of the set.For any set its power set is at least as big, if not bigger than the original set. Thatis, 2n > n for all n ≥ 0. We will have reason to explore this later when we disusslevels of in�nity.Example: for the set {A,B,C}, the power set would be:
{

{}, {A}, {B}, {C}, {A,B}, {A,C}, {B,C}, {A,B,C}
}.In this lass we will onsider only safe sets, that is, any set we onsider shouldbe well-de�ned. There should be no ambiguity as to whether or not an elementbelongs to a set. That is why we will avoid things like the village barber who shaveseveryone in the village that does not shave himself. This results in a ontradition asto whether or not he shaves himself. See also Titus 1:12 in the Bible: �A Cretan said:all Cretans are liars.� Also onsider Russell's Paradox: Form the set of sets that arenot members of themselves. It is both true and false that this set must ontain itself.These are examples of ill-de�ned sets.Sometimes, instead of listing elements in a set, we use set builder notation:

{x | x is a letter in the word �mathematis�}. The symbol �|� an be read as �suhthat.� Sometimes the symbol �⊂� is reserved to mean proper subset and the symbol�⊆� is used to allow the inlusion of the improper subset. Compare this with the useof < and ≤ in Setion 9.4 to exlude or inlude an endpoint. We will make no suhdistintion. A set may ontain the same elements as another set. Suh sets are equalor idential sets�element order is unimportant. A = B where A = {m, o, r, e} and
B = {r, o,m, e}, in general A = B if A ⊂ B and B ⊂ A. Sets may be termed2Hint: use Pasal's Triangle.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke

iθ G. Calkins

http://www.wordsmith.demon.co.uk/paradoxes/#barber
http://www.wordsmith.demon.co.uk/paradoxes/#russell


6 NUMBERS LESSON 1. ALL ABOUT SETSequivalent if they have the same ardinality. If they are equivalent, a one-to-oneorrespondene an be established between their elements.The universal set is hosen arbitrarily, but must be large enough to inlude allelements of all sets under disussion.Complementary set, A′ or A, is a set that ontains all the elements of the universalset that are not inluded in A. The symbol � ′� an be read �prime.�For example: if U = {0, 1, 2, 3, . . .} and A = {0, 2, 4, . . .}, then A′ = {1, 3, 5, . . .}.Suh paradoxes as those mentioned above, partiularily involving in�nities (dis-ussed in the next lesson), were well known by the anient Greeks. During the 19thentury, mathematiians were able to tame suh paradoxes and about the turn of the20th entury Whitehead and Russell started an overly ambitious projet to arefullyodify mathematis. Set theory was developed about this time and serves to unify themany branhes of mathematis. Although in 1931 Kurt Gödel showed this approahto be fatally �awed, it is still a good way to explore areas of mathematis suh as:arithmeti, number theory, [abstrat℄ algebra, geometry, probability, et.Geometry has a long history of suh systemati study. The anient Greek Eulidsimilarily odi�ed the mathematis of his time into 13 books alled The Elements.Although these books were not limited to Geometry, that is what they are bestknown for. In fat, up until about my grandfather's day, The Elements was thetextbook of hoie for the study of Geometry! The Elements arefully separated theassumptions and de�nitions from what was to be proved. The onept of proof datesbak another ouple hundred years to the anient Greek Pythagoras and his shool,the Pythagorean Shool.1.3 Intersetion and UnionOne we have reated the onept of a set, we an manipulate sets in usefulways termed set operations. Consider the following sets: animals, birds, and whitethings. Some animals are white: polar bears, mountain goats, big horn sheep, forexample. Some birds are white: dove, stork, sea gulls. Some white things are notbirds or animal (but birds are animals!): snow, milk, wedding gowns (usually).The intersetion of sets are those elements whih belong to all interseted sets.Although we usually interset only two sets, the de�nition above is general. Thesymbol for intersetion is �∩�.The union of sets are those elements whih belong to any set in the union.Again, although we usually form the union of only two sets, the de�nition aboveis general. The symbol for union is �∪�.©MMIX Ke
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1.4. PICTURES OF SETS (EULER/VENN DIAGRAMS) 7For the example given above, we an see that:{white things} ∩ {birds} = {white birds}{white animals}∪ {birds} = {white animals and all birds}{white birds} ⊂ {white animals} ⊂ {animals}Another name for intersetion is onjution. This omes from the fat that anelement must be a member of set A and set B to be a member of A ∩ B. Anothername for union is disjuntion. This omes from the fat that an element must bea member of set A or set B to be a member of A ∪ B. Conjuntion and disjuntionare grammar terms and date bak to when Latin was widely used.I should note the very mathematial use of the word or in the sentene above.Common usage now of the word or means one or the other, but not both (exludesboth). Mathematiians and omputer sientists on the other hand mean one or theother, possibly both (inluding both). This ambiguity an ause all kinds of problems!Mathematiians term the former exlusive or (EOR or XOR) and the latter inlusiveor. We will see ands & ors again in Numbers Lesson 7 on truth tables.1.4 Pitures of Sets (Euler/Venn Diagrams)John Venn (1834�1923) extended the use of diagrams �rst developed by LeonhardEuler (1707�1783), the great Swiss mathematiian, to give pitures of sets. Venndiagrams are often used to visualize set operations.A superset does not have to be the universal set. The above example has whitethings as a superset of white birds, while the set ontaining both animate and inani-mate objets is another possible universal set. A retangle should be used to enlosethe universal set, and other sets under disussion are enlosed inside. Relationshipsare indiated by overlapping regions.
a,e,i,o,u y,w

b,c,d,f,g,h

j,k,l,m,n,p,q

r,s,t,v,x,z

Here, the English alphabet is our universal set. Vowels and onsonants are nondis-joint subsets thereof. Disjoint would mean their intersetion was empty.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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8 NUMBERS LESSON 1. ALL ABOUT SETS
1.5 List of Greek/Latin TermsSeveral di�erent Greek and Latin terms and other abbreviations are purposefullyused in this series of letures. Most are listed here for referene.

• See Se. 1.6: aka, also known as
• See Se. 1: , ira, around
• See Se. 2.3 f, onfer, ompare
• See Se. 6.1 Cogito ergo sum, I think, therefore I am.
• eg, exempli gratia, for example
• See Se. 2.3: et., et etera, and so forth
• See Se. 1: i.e., id est, that is (to say)
• juxtaposition, plaed side-by-side
• See Se. 10.5: lb, libra, pounds (weight), sales
• See Se. 10.4 and 15.4: mantissa, mantissa, makeweight
• See Se. 2.10: mod, modulo, a small measure
• See Se. 6.4: Modus Ponens, Law of Detahment.
• See Se. 6.4: Modus Tollens, Law of indiret reasoning.
• nb, nota bene, note well
• See Se. 11.4: Q.E.D., quod erat demonstrandum, that whih was to beshown/demonstrated
• See Se. 8.7: vie versa, order opposite
• See Se. 15.1: viz, videliet, namely
• See Se. 10.2: vs, versus, against or faing

©MMIX Ke
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1.6. SET HOMEWORK 91.6 Set HomeworkThis homework was originally designed to motivate some leture topis and setup some information for later referene (problems 1�7). Also, it an take a week ormore for suh matters as buying or borrowing a graphing alulator to be resolved.Eah problem is worth two homework points unless otherwise noted.1. (4 points) Count to ten by ones.(a) Write these numbers down in order both with names (words) and in sym-bols (digits).(b) What number did you start with? Why?() What number omes next after ten?(d) How many numbers ome before ten?2. (3 points) Suppose you have two retangular egg artons eah �lled with adozen eggs. However, the egg artons are not the same shape�i.e. one is longand skinny, the other is short and fat. (i.e. is an abbreviation for the Latin termid est meaning that is (to say).)(a) What are the two most likely on�gurations of eggs in these artons?(b) What is another possible, but unlikely on�guration?() What are two ways to show that eah arton has the same number ofeggs?3. Repeat problem 1, part (a), but instead of assuming Arabi numbers, writeyour results using Roman numerals (no words needed).4. Begin with the number two (in Arabi numerals).
• Double the urrent number either by multiplying by two or adding itself.
• Repeat this proess a total of ten times. Be sure to show your work.5. Suppose a new toy osts a hundred lams, but you only have eighty-nine lams.After you buy the toy, how many lams do you have (i.e. you may have bor-rowed)? Show your work.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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10 NUMBERS LESSON 1. ALL ABOUT SETS6. By long division and showing your work, determine how many times six goesinto one million. If it did not go evenly, what is the remainder?7. Preferably using the proess of long division and showing your work, determinehow many times seven goes into one million. If it did not go evenly, what is theremainder?8. Name a ounting song. (Consider bringing it, if really speial.)For problems 9�11: Given A = {m, a, t, h} and B = {e, a, s, y}.9. Find A ∪ B.10. Find A ∩ B.11. Find A′ (also known as (aka): A).12. (3 points) Are these statements true or false. Venn diagrams may be helpful.(a) (A ∪ B) = A ∪B?(b) (A ∪ B) ∪ C = A ∪ (B ∪ C)?() A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)?13. (Future test points) In your Geometry textbook, read setion 2.5 and lookarefully at problems 5�10, 15, and 16. Note the appliation of unions andintersetions to geometri �gures.14. (0 points) Learn the game of Set R© and prepare for a double elimination Set R©tournament!©MMIX Ke
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Numbers Lesson 2God Invented The IntegersGod invented the integers. All the rest is the work of man. KronekerThere is a philosophi question as to whether man disovered or invented num-bers. This lesson title and quote are part of that debate. Although we disuss thenatural numbers in this lesson, we defer into the next lesson the development of themusing the Peano axioms and mathematial indution. Of ourse, there is an impor-tant hoie as to where to start: zero or one. Where to stop is another importantquestion! Alternate methods of developing sequenes are noted whih lead to Trian-gular Numbers, Fibonai Numbers, the Integer, and Fatorials. Integer division (aninteger divided by an integer yielding an integer quotient and an integer remainder)is disussed. First we disuss a seond great mathematiian.
2.1 One of the Greatest Mathematiians: GaussJohann Carl Friedrih Gauss was German, born the only son of poor parents.However, his early genius was reognized as disussed later in this lesson at a youngage. In his dotoral thesis at age 22, he developed the onept of omplex numbersand the Fundamental Theorem of Algebra. He applied mathematis to gravitation,eletriity, and magnetism, thus his name is losely tied into modern physis. Some ofhis important quotes are �Mathematis, the queen of the sienes, and arithmeti, thequeen of mathematis� and �Paua, sed matura (few, but ripe).� Gauss is perhapsmost famous for what I like to rather redundantly all the bell-shaped, gaussian,normal urve whih we will study later. He is also known for his method of leastsquares to obtain the best regression line whih we will study muh later.11



12 NUMBERS LESSON 2. GOD INVENTED THE INTEGERS2.2 The Development of Mathematis via Axioms,De�nitions, and ProofAn axiom is a statement assumed to be true.Postulate is another word for axiom.Axioms and logial reasoning together enable mathematiians to prove things. Inthis setion we will present and disuss ertain axioms from whih all the properties ofthe natural numbers may be proved. Later lessons will develop the onept of logialreasoning and proof. First, we will present groups of axioms to help us understandthe di�erent number systems we will enounter.Unde�ned words in today's lesson inlude the following: equal, suessor, andnumber. The terms addition, multipliation, subtration, and division will also notbe rigorously de�ned, but must satisfy the group and �eld axioms presented in Lesson8 and lesson 14. You were taught rudimentary algorithms in grade shool whih wewill review very brie�y.2.3 Natural or Counting Numbers and Whole Num-bersThe natural or ounting numbers are the familiar set: 1, 2, 3, 4, 5, . . .The ellipses symbol . . . (often read as dot dot dot) is often abbreviated et., whihis an abbreviation for the Latin term et etera meaning and so forth.There is atually no uniform agreement as to whether or not zero (0) is a naturalnumber. Popular usage indiates that it is not, whereas books on number theorywill often de�ne it to be one! Computer sientists and some popular programminglanguages suh as C and C++ also often treat it as a ounting number. The di�erenean be summarized by where we point or index (f your index �nger). f is anabbreviation for the Latin onfer meaning ompare.Most books de�ne whole numbers as the union of the ounting numbers with zero.2.4 Zero and One IndexingZero Indexing aknowledges zero as the number we start ounting with.One Indexing aknowledges one as the number we start ounting with.In this lass we will be �exible, but try to speify when zero indexing is to be©MMIX Ke
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2.5. THE COUNTABLE INFINITY, ℵ0 13used. The symbol N or N is used to denote the set of natural numbers.2.5 The Countable In�nity, ℵ0The set of natural numbers is an in�nite set. There is always a next larger number.The perhaps misguided onept of �biggest number� is usually onveyed by the termin�nity and symbol∞. Atually, this symbol is most ommonly used in the ontext ofthe real numbers. For integers, the symbol ℵ0 is ommonly used. ℵ is the �rst letterof the Hebrew alphabet and is alled aleph, muh like α or alpha. The subsriptis usually termed null instead of zero, hene aleph-null. The onepts of in�nity,in�ntesimal, and ontinuity were the root ause of several anient Greek paradoxeswhih we will explore further in Lesson 14.2.6 Addition and Triangular NumbersWhen we add two numbers together, they are termed addends. The result istermed the sum.An interesting subset of the natural numbers generated by addition are alledTriangular Numbers. These are so alled beause these are the total number of dots,if we arrange the dots in a triangle with one additional dot in eah layer.
•

• •
• • •

• • • •The triangular numbers thus are: 0, 1, 3, 6, 10, 15, 21, . . . (Not everyone onsiders0 to be triangular.)The following example has a rih history dating bak to the early hildhood ofGauss. To keep his lass busy for a long time, the teaher told them to add theounting numbers up to one hundred. Gauss �nished very quikly thus revealing hisearly genius. This is what he did:
T100 = (1 + 100) + (2 + 99) + (3 + 98) + . . .+ (50 + 51) (2.1)

= 101 × 50 (2.2)
= 101 × 100

2
(2.3)Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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14 NUMBERS LESSON 2. GOD INVENTED THE INTEGERSNote how the equal signs are aligned vertially, a form we will strongly enourageto redue mistakes.This an be generalized to: Tn =

n
∑

1

i =
n(n + 1)

2
, where mathematiians use theapital Greek letter ∑ (sigma) to represent summation. One of your teahers hasa partiular fondness for this symbol sine the �rst omputer he had muh aess tohad that nikname.2.7 Fibonai NumbersAnother way to add numbers together generates the Fibonai Numbers. A biog-raphy for this early Italian mathematiian will ome in a later lesson.1 Historially,this sequene was assoiated with the number of progeny a pair of rabbits produedgiven a month to mature and a monthly reprodutive yle. However, it appears insuh diverse plaes as sun�ower spirals and 3" by 5" ards.Fibonai Numbers, represented here by Li, an be de�ned as follows.Let L0 = 0 and L1 = 1. For all other Li, let Ln+1 = Ln−1 + Ln.This de�nition is reursive,2 i.e. eah term is de�ned in terms of the previoustwo. The �rst few Fibonai numbers are 0, 1, 1, 2, 3, 5, 8, 13, ... (Not everyoneonsiders 0 to be a Fibonai number.)2.8 FatorialsWe multiply a multipliand by a multiplier, and all the result a produt.Fatorials an be de�ned reursively as n! = n× (n− 1)! where 1! = 1.By de�nition, 0!=1. (Don't ask, it just works best!)For example, 5! = 5 × 4 × 3 × 2 × 1 = 5 × 4 × 3 × 2 = 5 × 4 × 6 = 5 × 24 = 120.In general, n! =

n
∏

i=1

i. The symbol Π is the apital Greek letter pi (π) andrepresents produt. The expression is termed a pi produt.1See http://www.engineering.sdstate.edu/~fib for more information.2We used the symbol L in honor of Fibonai's �rst name Leonardo, for the general Lymansequenes of whih the Fibonai sequene is most famous, and to avoid onfusion with Fermatnumbers.©MMIX Ke
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2.9. SUBTRACTION AND THE REST OF THE INTEGERS 152.9 Subtration and the Rest of the IntegersEarly in life, most of us enounter negative numbers, for example, when somethingosts more than what we have. Perhaps, we are able to get an advane on ourallowane and thus enounter debt.When you subtrat a subtrahend from a minuend, the result is termed thedi�erene.The integers are the ounting numbers together with their opposites and zero.Opposite in this ase refers to the onept of additive inverse (a �eld axiom). Itwould seem that we have doubled the size of the number system, but in atuality itis still a ountably in�nite set.The symbol Z or Z is used to denote the set of integers.It omes from the German word zahlen, meaning to ount.2.10 Integer Division or Division with Remainder,Modulo, CongrueneEven: An integer is even if it is an integer multiple of 2.Odd: An integer is odd if it is not an integer multiple of 2.Hene, the even numbers are 0,±2,±4, . . . and the odd numbers are±1,±3,±5, . . .Zero is even.Although division will be presented again later, a speial form will be introduedhere. Often the remainder obtained in a division is more important than the quotient.When a dividend is divided by a divisor, the results are termed the quotientand remainder, where quotient is the number of times the divisor went into thedividend and the remainder is how many were left over.When doing long division, it looks like this:
Divisor

Quotient R Remainder
|Dividend

.The onept of even and odd introdued above an be expressed as whether theremainder was 0 or 1 when divided by 2. This an be expressed as 0 mod 2 or 1 mod 2where mod is an abbreviation for the Latin term modulo meaning a small measure.The same syntax is often used to ask the question: What is 121 mod 2? Answer:121 is 1 mod 2, or an odd number. We also say, 121 ≡ 1(mod 2) Where ≡ is readequivalent to. A later homework problem will extend this onept to your every dayNumbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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16 NUMBERS LESSON 2. GOD INVENTED THE INTEGERSexperiene suh as telling time.Modulo is the remainder when dividing by a divisor.Numbers whih have the same remainder when divided by another are termedongruent. Congruene will have other uses in geometry to indiate two objetshave both the same shape and measure.
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2.11. COUNTING HOMEWORK 172.11 Counting HomeworkEah problem is worth three points.1. Complete the following addition table.+ 0 1 2 3 4 5 6 7 8 9 10 11 1201234567891011122. Use the information above to omplete the following table about even and oddnumbers. Even or odd should be used to �ll in the blanks.+ even oddevenodd3. Write out the �rst 15 Fibonai Numbers.4. Consider eah Fibonai Number as either even or odd. What is the pattern?How does this follow from the above even/odd addition table?5. Find up to �ve Fibonai Numbers whih are Triangular Numbers.6. Find six numbers whih satisfy the expression (are ongruent to): 1 mod 5.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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18 NUMBERS LESSON 2. GOD INVENTED THE INTEGERS7. Find the sum of all the integers from 1 to 50, inlusive.8. Complete the following multipliation table.
× 0 1 2 3 4 5 6 7 8 9 10 11 1201234567891011129. Use the information above to omplete the following table about even and oddnumbers.

× even oddevenodd

10. Bonus points: (An easy version of a Fibonai lassi) A snail landedat the bottom of a 30 foot well. It limbs up 3 feet every day, but slides bakdown 2 feet eah night. How long will it take the snail to get out of the well?©MMIX Ke
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Numbers Lesson 3The Peano Axioms
As far as the laws of mathematis refer to reality, they are not ertain;and as far as they are ertain, they do not refer to reality.Albert Einstein

This lesson allows us to slow down here in the early lessons and take a look athow the ounting numbers are developed (Peano Axioms), make referene to a oupleontroversial axioms (Well-ordered, and Least Cardinal), and list the mathematiianswe well be studying.
3.1 Father of Geography: EratosthenesEratosthenes was a Greek mathematiian, poet, athlete, geographer, and as-tronomer (276�194 b..) In mathematis, he is perhaps best known for his sievealgorithm for obtaining prime numbers whih bears his name and is developed in thenext lesson.Eratosthenes made remarkable disoveries, inventions, and measurements. Forexample, he developed the system of latitude and longitude, �rst alulated the ir-umferene of the earth, tilt of the earth's axis, the earth-sun distane, and inventedthe leap day. His ontemporaries niknamed him �Beta,� meaning two or seond,beause he was seond best, but in so many di�erent �elds.Eratosthenes was the hief librarian of the Great Library in Alexandria, studiedfor a time in Athens, and was a friend to Arhimedes.19



20 NUMBERS LESSON 3. THE PEANO AXIOMS3.2 Dedekind-Peano Axioms and Mathematial In-dution
• 1 is a member of the set N.
• If n is a member of N, then n+ 1 belongs to N (where n+ 1 is the �suessor�of n.
• 1 is not the suessor of any element in N.
• If n + 1 = m+ 1, then n = m.
• A subset of N whih ontains 1, and whih ontains n+1 whenever it ontains
n, must equal N.In general, we don't emphasize the above axioms in this lass, but they are pre-sented here to assure you the natural numbers were disovered, exist, and/or an bereated (just in ase you had any doubt). Some additional Peano Axioms are listedin Lesson 14.4.Axiom 5 above is the basis formathematial indution whih will be developedlater (Geometry, Chapter 11).

3.3 Well-Ordering AxiomWell-Ordering Axiom: Any nonempty set of positive integers ontains a leastelement.The minimum is another term for least element. The largest element is themaximum. An important note to remember is that the integers do have an order(but no minimum or maximum)! Also, the Well-Ordering Axiom is at the enter ofsome ontroversy. It is equivalent to the Axiom of Choie and thus the root of theContinuum Hypothesis. See Numbers lesson 14 for more details.©MMIX Ke
iθ G. Calkins Otober 4, 2009 Numbers and Their App.�pdf 4



3.4. CARDINAL VS. ORDINAL NUMBERS 213.4 Cardinal vs. Ordinal NumbersCardinal Numbers are positive integers (ounting numbers) that represent �howmany?�Ordinal Numbers are numbers that desribe position: �rst, seond, third,fourth,... lastAn example: There are nine innings (�how many?�) in a baseball game. Rightnow in the ninth inning (position), there is a man on �rst and third with two outs.We also saw the term ardinality in setion 1.2 where it was used to indiate the sizeof a set, as in how many elements a set had.In this last ontext, the ardinality or size of a set, is where ontroversy arises. It iswell known that not all in�nite sets are the same size and thus there arises a heirarhyof ardinals, possibly well-ordered. This relates to the ontinuum hypothesis and ahost of related axiom proposals whih some think should be aessible to the giftedhigh shools student.3.5 List of MathematiiansMany di�erent mathematiians are referened in this series of letures. There aretwo lists provided here. First are those for whom a short biography is provided andfor whih the student should make a onsious e�ort to learn about this semester.Freshmen will do presentations about these mathematiians during the seond nineweek period. The seond list is of those of a more inidental nature whose names areattahed to an important onept and the onept should be learned. Sophomoreswill do presentations about these mathematiians in their fall semester.3.5.1 Mathematiians/Sientists with Short Biographies
• Se. 1.1: Arhimedes (c. 287�212 b..), one of greatest mathematiians/physiists.
• Se. 9.1: Georg Cantor (1845�1918), set theory, trans�nite numbers.
• Se. 16.1: Abraham de Moivre, (1667�1754), omplex root �nding theorem.
• Se. 6.1: René Desartes (1591�1650), Frenh, analyti Geometry.
• Se. 3.1 and 4.6: Eratothenes (about 200 b..), Greek, prime sieve, earth'sirumferene.
• Se. 7.1: Eulid (about 300 b..), Greek, Father of Geometry, Even Perfets.
• Se. 13.1: Leonard Euler (1707�1783), (225
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22 NUMBERS LESSON 3. THE PEANO AXIOMS
• Se. 5.1: Pierre de Fermat amateur mathematiian, early 1600's, 22n

+ 1, xn +

yn 6= zn, n > 2 = FLT.
• Se. 12.1: Fibonai, 13th entury Italian; 0, 1, 1, 2, 3, 5, · · ·; rabbits, arabi al-gorithms.
• Se. 2.1: Carl Friedrih Gauss (1777�1855), one of greatest mathematiians/physiists.
• Se. 7.3 and 14.1: Kurt Gödel (1906�1978), 1931 Gödel's Inompleteness The-orem.
• Se. 15.6: David Hilbert (1862�1943), 23 problems of 1900, Foundations ofGeometry.
• Se. 4.8 and 8.1: Marin Mersenne, (1588�1648), Frenh monk, numbers/primesof form 2n − 1.
• Se. 15.1: John Napier, (1550�1617), Sotland, logs, slide rule, deimal point.
• Se. 4.1: Sir Isaa Newton (1642�1727), invented alulus, three laws of motion,universal gravitation, one of greatest mathematiians/physiists.
• Se. 5.10 and 10.1: Blaise Pasal (1623�1662), triangle, pressure gauge, alu-lator.
• Se. 11.1: Pythagoras (c. 500 b..), Greek shool, a2 + b2 = c2 i� △ABC isright.3.5.2 Mathematiians Noted More in Passing
• Se. 14.3: Niels Henrik Abel (1802�1829), abelian=ommutative.
• Se. 7.3: George Boole (1815�1864), Boolean Algebra.
• Se. 15.4: Henry Briggs (1561�1631), log tables.
• Se. 14.1: Paul Cohen (1934�present), 1963 showed independene of CH andAC.
• Se. 14.7: John Conway, (1937�present), surreal numbers, game of life.
• Se. 15.2: Rihard Dedekind (1831�1916), German, Dedekind Cut de�nes realnumbers.
• Se. 7.3: Augustus De Morgan (1806�1871), DeMorgan's Law.
• Se. 12.6: Diophantus of Alexandria (about 250 a.d.), integer solutions.©MMIX Ke
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3.5. LIST OF MATHEMATICIANS 23
• Se. 12.10: Christian Goldbah (1690�1764), onjeture: all evens=sum of twoprimes.
• Se. 15.4:: Johannes Kepler (1571�1630), three laws of planetary motion.
• Se. 14.7: Donald E. Knuth (1938�present), TeX, LaTeX, MetaFONT, Art of CP.
• Se. 4.1: Leibnitz, (1646�1716), German, oinventor of alulus.
• Se. 3.2: Guiseppe Peano (1858�1932), Axioms, indued the natural numbers.
• Se. 1.4: John Venn (1834�1923), set union/intersetion diagrams.
• Se. 12.6: Andrew Wiles (1953�), proved Fermat's Last Theorem.
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24 NUMBERS LESSON 3. THE PEANO AXIOMS3.6 Peano HomeworkEah problem is worth 3 points.1. Given A = {−2, 0, 4, 7} and B = {−4,−2, 0}, show both A∪B and A∩B usingVenn diagrams.2. Given A = {x | x > 4} and B = {x | x < 3}, �nd A ∪ B and A ∩ B using realnumber lines.3. Given M = {residents of Mihigan} and N = {residents of Niles, Mihigan},desribe in words M ∪N and M ∩N .4. Given B = {youths attending BCYF} and C = {BCM&SC students}, desribein words B ∪ C and B ∩ C.5. Draw a Venn diagram for the previous exerise. What might the Universal setbe?6. Given: X = {1, 3, 5, 7, 9}, Y = {1, 6, 11, 16, . . .}, Z = {0, 2, 4, 6, 8, . . .}. Find:(a) (X ∩ Z) ∩ Y(b) (X ∪ Y ) ∩ Z7. Simplify exatly: a. 9! b. 6! ÷ 3! . 8! × 8! ÷ (10! × 5!)

8. Evaluate the sum of the following: a. 5
∑

k=0

(k + 2) b. 4
∑

k=2

(2k + 3)9. Calulate the powers of 11 from 110 up to 116. Write eah one entered belowthe previous one.
10. Examine the fators of 231 and express it in a form relating it to the triangularnumber formula.©MMIX Ke
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Numbers Lesson 4The Naturals as Prime or CompositeChebyhev said it and I'll say it again,There's always a prime between n and 2n! Nathan FineThe natural numbers have been studied intensely for millenia. Several fasinatingproperties relate to their fators. We will explore these properties suh as number offators and sum of fators in this lesson.4.1 One of the Greatest Mathematiians: NewtonSir Isaa Newton, tiny, weak, and not expeted to survive his �rst day, was bornin England on Christmas day (old style) 1642. He is known not only as one ofthe greatest mathematiians, but also one of the greatest physiists as well. Heulminated (to limax) the sienti� revolution and authored Prinipia, the mostimportant single work in the history of modern siene. Newton attended TrinityCollege, then laid the foundation of alulus and extended his ideas on olor. Heexamined planetary motion and derived the inverse square law ruial to his theoryof universal gravitation. The three laws of mehanis were named after him. Hewas also warden, then later master, of the mint. There he oversaw a great reoinagewhih inluded reeded edges on oins and traking down a master ounterfeiter. Twoimportant quotes attributed to Newton are �If I have seen a little farther than othersit is beause I have stood on the shoulders of giants� and �I do not know what I mayappear to the world; but to myself I seem to have been only like a boy playing onthe seashore, and diverting myself in now and then �nding a smoother pebble or aprettier shell than ordinary, whilst the great oean of truth lay all undisovered beforeme.�Returning home from work at the Mint, Newton solved a mathematial problemthat was given to European mathematiians to solve; he turned in his work the nextday anonymously. Upon reeiving the solution, John Bernoulli exlaimed, �Ah! I re-ognize the lion by his paw.� Newton was knighted for his sienti� disoveries rather25



26 NUMBERS LESSON 4. THE NATURALS AS PRIME OR COMPOSITEthan deeds on the battle�eld�a �rst. Newton was buried like a king in Westmin-ster Abbey. Late in Newton's life a battle raged between the English and Germansregarding whether Newton was the sole inventor of alulus or if Leibnitz had alsoplayed an important role.4.2 Fators, Prime, Composite, 1 is UniqueA fator is a natural number whih divides another natural number evenly (as inwithout a remainder).The word fator will be used later in a less restrited sense as in x− 1 and x+ 1are fators of x2−1. Divisor is essentially a synonym of fator and is also ommonlyused interhangeably.A prime number only has fators of itself and one.The �rst few prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,47....Twin primes are primes whih di�er by 2.Examples of twin primes are: 3 and 5, 5 and 7, 11 and 13, 17 and 19, . . .. The twinprime onjeture states there are an in�nite number of twin primes. It is believed tobe true but a reent proof was found �awed.A omposite number has fators in addition to itself and one.One (1) is unique in that it is onsidered neither prime nor omposite.Example: The number 12 has the following fators: 1, 2, 3, 4, 6, and 12. Anumber suh as 12 an also be fatored into prime fators: 12 = 22×31. For integers,if arranged in order, suh fatoring is unique.A prime fator is a fator that is prime.There is a relationship between the prime fators and the number of fators; itinvolves the exponents. We will examine this in the homework.
12

2 6

2 3

A fator tree is a ommon way to �nd fators and I'm sure a TI-84+alulator program is also �oating around. An example of a fator treeis given to the left.Example: Consider fatoring 180 and 210. There are a wide variety of ways toonstrut a fator tree, but the �nal fatorization remains the same.Solution: 180 = 10·18 = 2·5·2·32 = 22·32·5 and 210 = 10·21 = 2·5·3·7 = 2·3·5·7.©MMIX Ke
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4.3. PRIME FACTORIZATION, GCF, LCM 274.3 Prime Fatorization, GCF, LCMOne a natural number has been fatored into prime fators, we an write itsprime fatorization (also known as prime deomposition). When we do this, we listeah prime fator in inreasing order and indiate how many times it is repeatedby using a supersript as an exponent. For example: 60 = 22 × 31 × 51. Whendone this way, the prime fatorization for the natural numbers is unique. The assoi-ated prime fatorization theorem (or Fundamental Theorem of Arithmeti) ould beproved, but not here.We an use prime fatorization to �nd Greatest Common Fators and Least Com-mon Multiples. Another method is Eulid's Algorithm (a proedure) whih weintend to link to here eventually.GCF: Greatest Common Fator (or GCD) is the greatest number that dividestwo given numbers.Example: The fators of 30 are {1, 2, 3, 5, 6, 10, 15, 30} and the fators of 12are {1, 2, 3, 4, 6, 12} and so the fators 30 and 12 have in ommon are {1, 2, 3, 6}.The GCF would then be 6.Two numbers are relatively prime if they have no ommon fators (exluding 1).In other words, two numbers are relatively prime if their GCF is 1. Examples are:15 and 16, 20 and 21.LCM: Least Common Multiple is the smallest (positive) number whih is amultiple of two numbers.The de�nitions of GCF and LCM ould be extended to more than two numbers. Infat, sine the alulator will only do pairs, suh an extension gives more meaningfultest questions!Example: The multiples of 4 are: {4, 8, 12, 16,...} and 6 has multiples of {6, 12,18, 24, 30, ...}. The intersetion of these sets is {12, 24, 36...}, so the LCM is 12.Example (Using Prime Fatorization): 30 = 21 × 31 × 51 and 12 = 22 × 31. Thusthe GCF(12, 30) is 21×31 = 6 and the LCM(12, 30) is 22×31×51 = 60. Notie how forGCF we hoose the smallest exponent for eah prime fator and for LCM we hoosethe largest. It might help to note that 12 = 22 × 31 × 50 and remember that anythingto the zero power is 1. Note how GCF(12, 30) × LCM(12, 30) = 6 × 60 = 12 × 30.Example: 25 = 52 × 170 and 85 = 51 × 171. The GCF(25, 85) is 51 × 170 = 5(hoosing the smallest exponents) and the LCM(25, 85) is 52 × 171 = 425 (hoosingthe largest exponents).Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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28 NUMBERS LESSON 4. THE NATURALS AS PRIME OR COMPOSITE4.4 Number of FatorsWe an tell how many fators a number has using only the exponents from itsprime fatorization. Suppose pq1

1 · pq2

2 · pq3

3 is the prime fatorization of some number
N . There are (q1 + 1)(q2 + 1)(q3 + 1) fators sine eah pi to all powers from 0 to qiand whether or not eah prime is a fator is independent.Example: 180 = 22 · 32 · 51, There are 3 · 3 · 2 = 18 fators, namely:
{1, 180, 2, 90, 3, 60, 4, 45, 5, 36, 6, 30, 9, 20, 10, 18, 12, 15}.Example: 210 = 2 · 3 · 5 · 7. There are thus 24 fators of 210.4.5 Primes Form an In�nite SetIt an easily be shown that the set of prime numbers is in�nite. This proof, whihdates bak to Eulid, (link) is as follows. Suppose, on the ontrary, that there are only�nitely many primes denoted p1, p2, . . . pn. Form the produtN = p1×p2×p3×. . .×pn.Then, the number N +1 is not divisible by any pi and so must be divisible by a primeother than these (inluding possibly only N + 1 itself). This ontradits our originalhypothesis that we listed all the (�nite set of) primes, hene this hypothesis is false.Hene there must be in�nitely many primes. This is a lassi proof by ontradition.It remains an open question whether or not there are an in�nite number of twinprimes. Using the well-ordering axiom, we an also prove all numbers are interesting!4.6 Sieve of EratosthenesHaving established the fat that there are in�nitely many primes, we might wantto generate a list of primes, or determine if a given number is prime. Eratosthenes,a Greek mathematiian around 200 b.., reated a simple algorithm1 to �nd primes.The proedure represents a sieve, or devie used for sifting out grains, sine he atuallypunhed holes. The method is simple:1. Write down the numbers from 1 to 100 (or any desired range).2. Start with two (the �rst prime number).3. Eliminate all its multiples.4. Move to the next prime (the next number on the list whih you have not elim-inated).5. Go bak to step 3 and repeat as many times as neessary.1 http://en.wikipedia.org/wiki/Eratosthenes has a link to a java sript.©MMIX Ke
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4.7. DIVISION RULES 29Note that anything above √100 = 10 does not eliminate any more numbers, sinefators ome in pairs of a big and a small.1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 4041 42 43 44 45 46 47 48 49 5051 52 53 54 55 56 57 58 59 6061 62 63 64 65 66 67 68 69 7071 72 73 74 75 76 77 78 79 8081 82 83 84 85 86 87 88 89 9091 92 93 94 95 96 97 98 99 1004.7 Division RulesHere are some useful rules for quikly heking for divisibility of natural numbersby small fators.Divisibility by 2: If an integer is even, that is ends in 0, 2, 4, 6, or 8, it is divisibleby 2.Divisibility by 3: If the sum of the digits of an integer is divisible by 3, then theinteger is divisible by 3.Example: 729 → 7 + 2 + 9 = 18 → 1 + 8 = 9. Thus 729 is divisible by 3. Notehow this was done reursively.Divisible by 4: If the last two digits of the integer are divisible by 4, then the integeris divisible by 4.In general, an integer is divisible by 2n if the last n digits are divisible by 2n.Divisibility by 5: If the last digit is 0 or 5, the integer is divisible by 5.If the last n digits are divisible by 5n, then the integer is divisible by 5n.Divisibility by 9: If the sum of the digits of an integer is divisible by 9, then thenumber is divisible by 9.A ommon method taught in days past for �nding omputational mistakes wasalled Casting Out 9. This is really a form of modulo arithmeti. In other bases, thisNumbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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30 NUMBERS LESSON 4. THE NATURALS AS PRIME OR COMPOSITEmethod extends to �Casting Out base - 1.�Divisibility by 11: If the sum of the digits in the even powers of 10 positions di�erfrom the sum of the digits in the odd powers of 10 positions by a multiple of 11, theinteger is divisible by 11.Example: 1, 234, 508 → 1+3+5+8 = 17 and 2+4+0 = 6, thus sine 17−6 = 11,1,234,508 is divisible by 11.In general, determining if a large number is prime or omposite is a di�ult task.Substantial researh ontinues in this �eld due to the fat that many enryptionshemes are dependent on this di�ulty.4.8 Perfet Numbers and Mersenne PrimesA perfet number is equal to the sum of its fators, exluding itself.The �rst two perfet numbers are:
6 = 1 + 2 + 3 = 1 × 6 = 2 × 3 = 22−1 × (22 − 1) and
28 = 1 + 2 + 4 + 7 + 14 = 1 × 28 = 2 × 14 = 4 × 7 = 23−1 · (23 − 1).The anients onsidered these numbers perfet partly due to their lose proximityto the number of days in a week (whih is not elestial!) and the lunar/menstralyle.Mersenne Numbers are of the form 2n − 1.Mersenne Primes are primes of the form 2n − 1.A biography for Mersenne is found at the beginning of Lesson 8. Marin Mersennewas a 17th entury monk who studied the numbers 2n − 1. These an only be primeif n is prime, but that is no guarantee of primality as seen in the homework.Eulid showed the known perfet numbers were of the form 2p−1 × (2p − 1). Eulerproved even perfet numbers ould only be in this form. It remains an open questionwhether or not there are any odd perfet numbers. Another perfet number is gener-ated, whenever a Mersenne prime is found. The 47th Mersenne primes was reportedApril 12, 2009. The exponent is n = 42643801. The largest known prime is usually aMersenne prime. GIMPS2 involves the author and some students in this searh.Prime numbers have been used extensively in ryptology used to hide messages.Some numbers have beome restrited or illegal to possess, utter, or propagate by thegeneral publi, suh as those used to enode musi and videos on DVDs.3In addition to the searh for perfet numbers, the GIMPS projet also helps in�nding small fators for Mersenne numbers using the Elliptial Curve Method (ECM).2http://www.utm.edu/researh/primes/mersenne.shtml3See: http://en.wikipedia.org/wiki/Illegal_number©MMIX Ke
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4.9. PRIME HOMEWORK 314.9 Prime HomeworkEah problem is worth three points.1. What is the sum of the proper divisors of 24 × (25 − 1) and 26 × (27 − 1)? Arethese numbers perfet?
2. For the number 220, �nd all the fators; add the fators (exept itself); ountall the fators; �nd the prime fatorization.
3. For the number 284, �nd all the fators; add the fators (exept itself); ountall the fators; �nd the prime fatorization.
4. Extend the Sieve of Eratosthenes to �nd the prime numbers between 101 and200. Bonus points for de�ning and identifying any prime deades.101 102 103 104 105 106 107 108 109 110111 112 113 114 115 116 117 118 119 120121 122 123 124 125 126 127 128 129 130131 132 133 134 135 136 137 138 139 140141 142 143 144 145 146 147 148 149 150151 152 153 154 155 156 157 158 159 160161 162 163 164 165 166 167 168 169 170171 172 173 174 175 176 177 178 179 180181 182 183 184 185 186 187 188 189 190191 192 193 194 195 196 197 198 199 200
5. How large a fatorial an you alulate exatly using a TI-84 alulator? ATI-nspire alulator?
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32 NUMBERS LESSON 4. THE NATURALS AS PRIME OR COMPOSITE6. Add the �rst few odd numbers together. Initially, just the �rst one. Write itdown as sequene member number one. Then add the �rst and seond (1 + 3).Write it down as sequene member number two. Then the �rst three, et. untilyou have added the �rst �ve together. Symbollially this an be expressed as:
n
∑

i=0

2i+1 for n ∈ {0, 1, 2, 3, 4}. What pattern is there in the resultant sequene?
7. Prime fator 2047 otherwise known as 211 − 1.
8. For both parts, write out the prime fatorization of the original numbers.Bonus points for Venn diagrams!(a) Find the GCF(156,182).(b) Find the LCM(496,8128).
9. Find the least ommon multiple and the greatest ommon fator of:a) 60, 72 b) 12, 20, 36 ) 9, 12, 14
10. Prime fator 1001.
11. bonus: Bob has every sixth night o� from work. It happens that tonight hashis favorite shows that only ome on one a week and he is o� to wath them.How long until he gets to wath his shows again?©MMIX Ke
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Numbers Lesson 5Powers, Bases/Conversion,Pasal's TriangleThe taxiab number of 1729 = 7 × 13 × 19 was dull.1729 is a very interesting number. It is the smallest integer whih is thesum of two ubes multiple di�erent ways.Paraphrase of Hardy and RamanujanIn this lesson we will examine ways to express the natural numbers, bases, powers,and some other important atagories of natural numbers. We will also explore somerelated topis suh as parity, Fermat numbers, and Pasal's triangle.5.1 The Prine of Amateur Mathematiian: FermatPierre de Fermat was an amateur mathematiian living in the early 1600's (1601�1665) who had a profound in�uene on mathematis for the last four enturies. Byamateur we mean Fermat earned his living by doing other work and mathematiswas purely a hobby. Fermat was a jurist, whih means he had a law degree andpratied law. In his job he was supposed to avoid soial ontat and this probablygave him more time to devote to mathematis. With Pasal he developed the theoryof probability and independent of Desartes he developed analyti geometry. He alsodeveloped many important onepts whih led into the development of alulus. Inthis lesson we will explore the numbers whih were named after him.Perhaps Fermat's most famous legay is known as Fermat's Last Theorem. AfterFermat died his son found written (about 1637) in the margin of his textbook byDiophantus the equation xn + yn 6= zn, where n > 2 along with the statement:�I have disovered a truly marvelous proof of this, whih, however, the margin isnot large enough to ontain.� This is a generalization of the Pythagorean Theorem(where n = 2). This beame known as Fermat's Last Theorem (now FLT) beause it33



34 NUMBERS LESSON 5. POWERS, BASES, & TRIANGLESremained after all his other theorems had been solved. The theorem part of the namewas also a misnomer until it was atually proved in 1993/4. More on both theoremsis in Lesson 12.There is also an important theorem known as Fermat's Little Theorem whihforms the basis of some primality testing: If p is a prime number, then for any integer
a, ap − a is evenly divisible by p (ap ≡ a (mod p).
5.2 Powers, Exponents, Base 10The expression xn is alled a power where, n is the exponent and x is the base.Example: 210 = 1024, 1024 is a power of 2, spei�ally it is 2 multiplied by itself10 times: 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2. Exponentiation is a shorthandnotation for suh repeated multipliation.Most people have 5 digits (��ngers�) on eah hand and 2 hands. This has led tothe use of the deimal system of notation with 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Weexpress our numbers using plae value where eah position to the left is weighted10 times the position to its right. Thus 1331 = 1×103 +3×102 +3×101 +1×100 =

1000+300+30+1. This system of writing numbers is the Hindu-Arabi NumberSystem or Arabi Numerals.
5.3 Roman NumeralsWe already enountered in the homework for Numbers Lesson 1 the Roman Nu-meral System. We wish to formalize here some information about them and makeertain you are familiar with them.The following symbols have the following values: I=1; V=5; X=10; L=50; C=100;D=500; and M=1000. Lower ase an also be used, espeially for small values: i=1;v=5; x=10; l=50. Smaller values go to the right unless they represent subtration.The restritions for subtration are: 1) you an subtrat no more than one symbol;2) that symbol an not be more than an order of magnitude less; and 3) it must alsobe a power of ten. Thus 49 = XLIX, but not IL and 45 = XLV, but not VL.©MMIX Ke
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5.4. PROPERTIES OF EXPONENTS 355.4 Properties of Exponents�Anything� to the zero power is 1: x0 = 1 (x annot equal 0.)Anything to the �rst power is itself: x1 = x.Properties of Exponents:1. Produt of two powers with like bases: xa × xb = xa+b.2. Quotient of two powers with like bases: xa/xb = xa−b.3. Power of a power: (xa)b = xab.4. Power of a produt: (xy)a = xaya.5. Power of a quotient: (x/y)a = xa/ya.Notie how the plae value system was not possible before zero was invented (someinsist disovered!).One order of magnitude means one power of ten.A Keiθ term is order of bagnitude, or binary order of magnitude, whih meansone power of two.Some powers have speial names like xn where n = 2 are alled squares and for
n = 3 are alled ubes. Some times the term perfet square or prefet ube is usednot in the sense of perfet number but in the sense of being the square of a rationalnumber, like 22 = 4 and not the square of an irrational number, like √

5 ·
√

5 = 5.Five is not onsidered a �perfet square.�5.5 Base 11, Base 12, Converting from Base 10The number above (1331) ould just as easily be expressed in base 11 as 100011 =

1 × 113 + 0 × 112 + 0 × 111 + 0 × 110. Note: when no base is indiated (usuallyvia a subsript afterwards), base 10 is assumed. Maybe you prefer base 12, where
92E12 = 9×122 +2×121 +E×120, and T represents the digit �ten� and E represents�eleven� in our duodeimal system. The following example also illustrates how toonvert from base 10 to another base by repeated division and use of the remainders.9 R 212| 110 R 11 or �E�12|1331Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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36 NUMBERS LESSON 5. POWERS, BASES, & TRIANGLES5.6 Base 2, Base 4, Base 8, and Base 16; Convertingto Base 10The omputer revolution has expanded the use of bases 2, 8, and 16 espeially. Atypial base 2 number might be (the harater �6� in EBCDIC):
111101102 = 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20

= 128 + 64 + 32 + 16 + 0 + 4 + 2 + 0

= 246Base 2 is also alled binary. Base 8 is known as otal. Hexadeimal, ora�etionately alled hex for short, refers to base 16.Sine 4, 8, and 16 are powers of 2, it is an easy matter to onvert suh a numberfrom base 2 to base 2n. You regroup bits n at a time from the right. For example:
111101102 = 33124 = 3668 = F616.In base 16, we need names for our 6 additional ��ngers� (I mean digits). The usualhoies are A, B, C, D, E, and F. Below is a table of how the numbers are representedin the ommon bases.Eah binary digit is alled a bit.Eah hexadeimal digit (or 4 bits) Keiθ alls a hit (hex digit).It is more ommonly alled a nibble.8 bits make a modern byte.1 (Hene the term nibble above for half a byte.)Among the many de�nitions of bit is another important histori and mathematialmeaning. The US dollar originated out of the Spanish-Amerian peso or piee of eight,whih ould be broken into eight parts alled bits. Hene 2 bits is the equivalent ofa modern US quarter and 8 bits is a dollar.Note how lose in magnitude 103 = 1000 and 210 = 1024 are.The term kilo (see Numbers Lesson 10) whih really is 103 now often means 210(1024).The term mega whih really is 106 now often means 220 (1,048,576).The term giga whih really is 109 now often means 230 (1,073,741,824).The term tera whih really is 1012 now often means 240 (1,099,511,627,776).1Historially a byte ranged from 6 to 12 bits.©MMIX Ke
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5.7. PARITY 37Base 16 Base 10 Base 20 0 00001 1 00012 2 00103 3 00114 4 01005 5 01016 6 01107 7 01118 8 10009 9 1001A 10 1010B 11 1011C 12 1100D 13 1101E 14 1110F 15 1111For a good demonstration of adding binary numbers see the video athttp://www.woodgears.a/marbleadd/index.html
5.7 ParityParity is a term now ommonly used in omputer storage and ommuniations.The word is related to par as in golf where �he hit under par� and onnotes equivalene.In omputers, it relates to base 2 and there are several types: even, odd, mark, andno. Even parity typially means a bit will be appended to eah byte (or word) to forean even number of bits. For example, the harater �1� in the ASCII ommuniationode is 3116 or 001100012. If transmitted or stored with even partiy, this byte wouldhave an additional bit appended and that bit would be set (=1) for there to be aneven number of bits set. Odd parity would mean the appended bit would be reset(=0). Errors an then be deteted if the reeived or realled value does not have theorret parity. More advaned enoding shemes (LRC, CRC, Hamming, et.) allowerror orretion as well, but require additional storage. Mark indiated the parity bitis always set (=1). No parity indiates the parity bit is either not present or equal tozero.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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38 NUMBERS LESSON 5. POWERS, BASES, & TRIANGLES5.8 Other BasesAn interesting appliation of base 3, known as ternary, an be read about inan artile in the Amerian Sientist, July�Aug. 1998, pg 314�9. There is no reasonthe base has to be positive. A homework problem will deal with base −3. Base 60was developed by the anient Babylonians. We still use it for time (60 seonds = 1minute; 60 minutes = 1 hour) and angle (60 seonds = 1 minute, 60 minutes = 1degree; 6 × 60 = 360 degree = 1 irle) measurements. A fun base an be base 26and will also be dealt with in the homework. The letters of the English alphabet arean obvious hoie for �digits.�
5.9 Fermat NumbersFermat noted that 220

+ 1 = 21 + 1 = 3 = F0 was prime as was 221

+ 1 = 5 = F1,
222

+1 = 24+1 = 17 = F2, 223

+1 = 28+1 = 257 = F3, and 224

+1 = 216+1 = 65537 =

F4. He onjetured that 22n

+ 1 = Fn was always prime. In 1732, Leonard Euler,another famous mathematiian, showed that 225

+ 1 = 232 + 1 = F5 = 4294967297was divisible by 641. The searh for prime fators of larger Fermat numbers ontinuesand is another potential EXPO Projet.In 1796, Gauss used Fermat numbers in his proof that a regular heptagon (7-sidedpolygon) was not onstrutible, whereas the regular heptadeagon (17-sided polygon)was. Please note that Fn usually refers to Fermat numbers whih is why we used Lnfor Fibonai numbers in Numbers Lesson 2. (Note also: Most alulators proessstaked exponents left to right and not right to left as mathematiians would expet,thus parentheses are highly reommended.) Before the 1977 Fortran standard Fortranompilers were notoriously shizophreni on how this was interpretted. The TI-82/3/4series of alulators still is, with a di�erent order used depending on whether the ∧or −1 symbols is used! (Compare 3∧3∧(−1) with 3∧3−1.)
5.10 Pasal, Pasal's TriangleBlaise Pasal was yet another famous mathematiian ontemporary with Fermatwith whom he shares the honor of inventing probability. His biography is loated inSetion 10.1. Pasal's Triangle is useful in many diverse �elds of mathematis and isdisplayed below:©MMIX Ke
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5.11. GOLDEN RULE, FOIL/BOX 391 row 01 1 row 11 2 1 row 21 3 3 1 row 31 4 6 4 1 row 41 5 10 10 5 1 row 5. . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . row nNotie how eah entry is the sum of the numbers diagonally above it to the leftand to the right�where missing numbers on the sides an be assumed to be zero.Notie how we already saw the �rst few rows in the homework as the powers of 11!Eah entry in Pasal's triangle an also be found as: nCr = n!
r!(n−r)!

, where n is the rownumber and r goes from 0 to n for eah position in the row. An alternate notationfor these binomial oe�ients is:
(

n+1
r

)

=
(

n
r

)

+
(

n
r−1

) or n+1Cr = nCr + nCr−1.Pasal's Triangle was well known to the Chinese 300 years before Pasal where itwas used to extrat nth roots. However, Pasal was the �rst to apply it to games ofhane between two people.Example: The reursive de�nition of fatorials is useful for simplifying ombina-tions or nCr. 9C6 = 9!
6!3!

= 9·8·7·6!
6!·3! = 9·8·7

3·2 , where we have expliitly show the reursivede�nition of fatorial and the ommon fator of 6! has been anelled.5.11 Golden Rule, FOIL/BoxAlthough we will formally de�ne binomial in Numbers Lesson 13, a quik reviewof algebra will be inluded here. First, when dealing with equations, it is importantto always follow the �golden rule:� �what you do to one side, always do to the other.�This is partially formalized as two axioms as follows:Additive Property of Equality: If a = b, then a+ c = b+ c.Multipiative Property of Equality: If a = b, then ac = bc.Also, notie what happens when 23 is multiplied by 12:
(12)(23) = (10 · 20) + (10 · 3) + (2 · 20) + (2 · 3)

= 200 + 30 + 40 + 6

= 276Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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40 NUMBERS LESSON 5. POWERS, BASES, & TRIANGLES23 12
× 12 × 2346 36+ 23 + 24276 276This is an important algorithm to remember when multiplying binomials suh as

(x+ 1)(x + 1) = x2 + x+ x + 1 = x2 + 2x+ 1, and is often referred to as the FOILmethod, an aronym for First, Outer, Inner, Last. However, the box methodgeneralizes to higher order polynomials.
2x −3y

x 2x2 −3xy

−2y −4xy 6y2So, (2x− 3y)(x− 2y) = 2x2 − 7xy + 6y2.5.12 Binomial Theorem or FormulaThe Binomial Theorem or Formula using Pasal's Triangle an be useful for eval-uating binomials raised to powers:
(x+ y)n =n C0x

ny0 +n C1x
n−1y1 +n C2x

n−2y2 + . . .+n Cnx
0ynExample:

(3x+4)5 = 1 ·(3x)5(4)0+5 ·(3x)4(4)1+10 ·(3x)3(4)2+10 ·(3x)2(4)3+5 ·(3x)1(4)4+

1 · (3x)0(4)5Of ourse, 40 = (3x)0 = 1, (3x)1 = 3x, and 41 = 4 so this might be written asfollows before simpli�ng further.
(3x+4)5 = 1 ·(3x)5 +20 ·(3x)4 +10 ·(3x)3(4)2 +10 ·(3x)2(4)3 +5 ·(3x)(4)4 +1 ·(4)5However, it has now lost the obviousness of the pattern, where eah oe�ientomes from a line in Pasal's Triangle, one set of exponents are dereasing, while theother set is inreasing. For any term, the exponents sum to the power, in this ase 5.
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5.13. BASE HOMEWORK 415.13 Base HomeworkEah problem is worth two points.1. Write out the de�nition of googol from a good ditionary.2. Write out the de�nition of googolplex from a good ditionary.3. Compare the Amerian, Frenh, British, and German number systems for theterm billion and milliard. (See next problem.)4. When we think of large numbers, we think of thousands, millions, billions, andtrillions. Find a good ditionary that extends the onept of numbers beyondtrillion and write a few down.
5. Solve for x and z: 22 × 23 = 2x and (22)3 = 2z.6. Clearly apply the FOIL method to expand (x+ 1) × (x+ 1).7. Write a huge number using ONLY three 9's (and nothing else).8. Use Pasal's Triangle to expand (x+ 1)3.9. Calulate 220 and 230. Compare (the relative or perent di�erene) with 106and 109, respetively.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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42 NUMBERS LESSON 5. POWERS, BASES, & TRIANGLES10. Knowing that the number of dominoes in a set is a triangular number, andthat there are 28 dominoes in a double 6 set, alulate the number of dominoesin a double 9, double 12, double 15, and double 16 set.11. Madam I'm Adam. Name no one man. Some numbers are palindromes.(Look it up in ditionary). Write at least �ve of the �fteen, prime, three digitpalindromes. (Use Homework 3, problem 4 for referene.)12. Convert 11012 into base 10.13. Convert 27 into base 2.14. Consider $1.17 as 117 pennies and onvert it into the smallest number of quar-ters, nikels, and pennies. Write this as a base 5 number of pennies.15. Convert 2345 (2 quarters, 3 nikels, 4 pennies) into a base 10 number of pennies.16. Change 38 days into weeks and days.17. Change 210 hours into days and hours.18. Change $2.69 into the smallest number of oins onsisting of quarters, dimes,nikels, and pennies.19. Change A3B516 into base 10.20. Multiply and simplify: a) (2x− 5)(3x+ 2) b) (x+ 3)(x− 7).21. Bonus: How many what is a rore? What is its value in US dollars?22. Bonus: How muh modern Amerian hange an you have and not be able tomake hange for a dollar?©MMIX Ke
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Numbers Lesson 6This is a Lie!Cogito ergo sum.1 René DesartesIn this lesson we give an overview of the �eld of logi. We introdue if-thenstatements, logial shorthand, negation, onverses, inverses, and the ontrapositive.Dedutive and indutive reasoning are introdued along with diret and indiret proof.First we have to think our way into existene.6.1 Father of Modern Mathematis: René DesartesRené Desartes, the early Frenh mathematiian (1591�1650) spent onsiderabletime philosophizing about mathematis and its very existene. To get started he hadto assume his very own existene in his famous quote (in Latin): �Cogito ergo sum,�whih means, �I think, therefore I am.�Desartes studied law but never pratied it, hoosing instead to travel Europeas a merenary soldier. In this way he met lots of people and had many usefulexperienes. There is speulation he ated as a spy in this way. When Galileo wasondemned by the Catholi Churh, Desartes abandoned plans to publish a greatwork he had written.Desartes was also a key �gure in the sienti� revolution. He invented analytigeometry with the artesian oordinate system whih is named after the latinizedversion of his name. This invention revolutionized mathematis by forming a strongonnetion between geometry and algebra. Desartes also spent onsiderable time inbed, rarely getting up before noon. It has been said he developed the artesian oor-dinate system while lying in bed wathing a �y on the eiling and trying to desribeits movements. Desartes also reated exponential notation, the use of supersriptsto indiate repeated multipliation.1I think, therefore I am. 43
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44 NUMBERS LESSON 6. THIS IS A LIE!Desartes died in Stokholm, Sweden while tutoring the queen there. Althoughhe died of pneumonia, the fat of having to get up early and ride aross town to tutorthe queen in that old environment is said to have been the major ause.6.2 Hypothesis, Conlusion, ConjetureA premise (also known as an anteedent or hypothesis) is a tentative assumptionmade in order to draw out and test its logial or empirial onsequenes.A onsequene or onlusion is the neessary result of two or more propositionstaken as premises.Sentential logi or propositional logi, onsists of a sentential language, a semantiinterpretation of that language, and a sentential derivation system. Prediate logigoes further and builds on sentential logi. We give here the merest overview of thisbroad �eld.6.3 Dedutive vs. Indutive ReasoningAs stated in the �rst two lessons, Geometry often deals with proofs. Proofs arebased on logial reasoning whih follow two basi types.Dedutive (or logial) Reasoning is the proess of demonstrating that if ertainstatements are aepted as true, then other statements an be shown to follow fromthem.Indutive Reasoning is the proess of observing data, reognizing patterns, andmaking generalizations from the observations.Both are important to mathematis in general and to Geometry spei�ally.The generalization used in indutive reasoning is alled a onjeture.A statement is a delarative sentene whih is either true or false, but not both.Proposition is often used interhangely with the term statement. A paradox is asentene whih is both true and false, suh as �I am lying� (f Titus 1:12). A simplestatement is a statement ontaining no onneting words. Compound or omplexstatements are formed from simple statements using basi onnetion. The basionnetions are: and, or, if... then..., if and only if, not. Often, other onnetingwords suh as unless, beause, either/or, neither/nor, although, nevertheless, exept,but (save), only, as, sine, et. are used whih an be restated using the basi ones.Examples:�Unless he is areful, he will rash.� means the same as �If he is not areful, then he©MMIX Ke
iθ G. Calkins Otober 4, 2009 Numbers and Their App.�pdf 4

http://www.iep.utm.edu/p/prop-log.htm


6.3. DEDUCTIVE VS. INDUCTIVE REASONING 45will rash.��Whenever I tell a joke, my students laugh.� is equivalent to �If I tell a joke, then mystudents laugh.� exept for some irumstane of time.This de�nition of statement is based on an axiom of Aristotle (anient Greekphilosoper (. 384�322 b..)) alled the law of exluded middle. Symbollially, p∨
p. (This is very similar to the priniple of bivalene whih states every propositionis either true or false, but not equivalent! There are logis with one and not theother.) If we rejet this axiom, fuzzy logi involving probability is the result. Inreent years, fuzzy logi has started to invade your ars and homes (washing mahines,et.), and is �the rage.�When translating delarative statements into logial form it is ommon to reastthings in the present tense. This assumes that time relationships are not importantto the argument. As noted above, whenever ertain ommon words are, used thesentene should be reast using the standard if-then syntax of logi.The following statements may be equivalent and useful for this task:

• If apples are on sale, then I buy apples.
• Whenever apples are on sale, I buy apples.
• Beause apples are on sale, I buy apples.
• I buy apples sine they are on sale.
• I buy apples unless apples are not on sale.
• I buy apples exept when apples are not on sale.
• I buy apples save when they are not on sale.
• I buy apples as they are on sale.
• I buy apples until they are not on sale.The following statements may be somehow di�erent and you might try your handat reasting them in standard form.
• I buy apples only if they are on sale.
• Although apples are not on sale, I buy apples.
• I buy apples whether or not they are on sale.
• I buy apples either if they are on sale or if they are not on sale.
• I buy apples neither when they are on sale, nor if they are not on sale.
• Apples are not on sale, nevertheless I buy apples.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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46 NUMBERS LESSON 6. THIS IS A LIE!6.4 Logial ShorthandShort hand notation is often used when writing logial arguments. Statementssuh as �I have a job.� may be replaed by p and the onditional statement, �If Ihave a job, then I must work.� might be replaed by p → q, where q in this aseis equivalent to �I must work.� A onditional is also known as an impliation. Anif-then statement an be rewritten using the word implies, and in fat, the symbol →is often read that way. Some reasoning is valid, in that it gives orret or truthfulresults whereas some is faulty or invalid. You may think the old adage: �Wathyour p's and q's� is derived from the extensive usage of these symbols. However, itatually is drinking advie to wath ones pints and quarts!A theorem is a statement that has been proven, or an be proven, from the postu-lates.A orollary is a result whih follows naturally, or a spei� appliation of atheorem. A lemma is a mathematial statement proven not for its own sake, but foruse in proving a more important statement alled a theorem.Modus Ponens (MP) says that if p→ q is true and p is true, then q must be true.This priniple is also known as the Law of Detahment (LD).Modus Tollens (MT) says that if p → q is true and q is false (not true), then pmust be false. MT is essentially equivalent to the Law of indiret Reasoning(below) and is the basis for proof by ontradition.Example: onsider the following onditional statement: If the weather is beauti-ful, then we'll go for a walk. MP implies that if p is true (The weather is beautiful.)
q is also true (We'll go for a walk.). MT implies that if p→ q is true (If the weatheris beautiful, then we'll go for a walk.) and q is false (It is not the ase that we'll gofor a walk.) then p is false (The weather is not beautiful.).It is a good thing when a system of axioms is onsistent, sound, and omplete.Consistent means none of the theorems ontradit one another.Soundness means the system's rules of proof will never allow a false inferene froma true statement.Complete means all true statements an be proved within the system.Unfortunately, no useful system of arithmeti an be both onsistent and omplete(Gödel's Inompleteness Theorem).©MMIX Ke
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6.5. NEGATION/DOUBLE NEGATION, CONVERSE, ETC. 47
6.5 Negation/Double Negation, Converse, et.The negation, symbollially ∼ p, p, or -p, of a statement is very useful. If p is �Ihave a job,� then ∼ p is �I do not have a job.�The double negation, as taught in English (not Spanish!) gives bak the originalstatement! ∼ (∼ p) is equivalent to p. If it is not true, that �I do not have a job.�Then it must be true �I have a job.�The Converse of p→ q is q → p.The Inverse of p→ q is ∼ p→∼ q.The Contrapositive of p→ q is ∼ q →∼ p.Law of Contrapositive (LC) states that if a onditional is true, so is its ontra-positive.Continuing the weather example above, the ontrapositive would be �If we'll notgo for a walk, then the weather is not beautiful.� LC tells us this is true if the originalstatement is true. It should be easy to see that the onverse of the inverse is theontrapositive.Whether the onditional is true does not a�et whether the onverse is true.A ounterexample is an example of a onditional statement being false.Sometimes, instead of writing a long proof to determine something is true, manywill try to �nd a ounterexample.An �if and only if� (often abbreviated i�) statement is alled a bionditionaland ombines the statements p→ q and q → p into p↔ q. To prove a bionditional,one proves the orresponding two onditionals.A syllogism is omposed of amajor premise, aminor premise, and the resultingonlusion.A syllogism has three parts. Therefore, this is not a syllogism. (ha ha ha).The onsequene is often preeeded by the word therefore whih is also oftenabbreviated by three dots arranged in a triangle pointing up (∴).The Law of Syllogism is also alled the Law of Transitivity (see also NumbersLesson 14) and states: if p→ q and q → r are both true, then p→ r is true.Reasoning and also de�nitions are sometimes said to be irular.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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48 NUMBERS LESSON 6. THIS IS A LIE!6.6 Diret vs. Indiret ProofMathematial proofs ome in two basi �avors known as diret and indiret. Wealready saw an example of an indiret proof in Numbers Lesson 4 when we proved byontradition that primes form an in�nite set. Proof by ontradition is also knownas using the law of indiret reasoning.Law of Indiret Reasoning:If valid reasoning from a statement p leads to a false onlusion, then p is false.Any proof using the Law of Contrapositive (above) or the Law of Ruling outPossibilities (below) are also lassi�ed as indiret proofs.Law of Ruling out Possibilities:When statement p or statement q is true, and q is not true, then p is true.We will see further examples of these �ve laws of logi in Chapter 11 of ourGeometry textbook and my assoiated supplement.6.7 Model Theory and Mathematial ModelsTraditionally logi was a part of philosophy and one of the three subjets studiedtogether: grammer, logi, and rhetori. Sine the mid-1800's it has been studied asa part of the foundations of mathematis. It is important for a full understandingof fallaies and paradoxes. Set theory has largely replaed the role of logi in thedevelopment of mathematis.There are variations on logi and extensive disussions whih link logi with vari-ous shools of philosophy. The �eld has hanged extensively within the last 100 yearswith the development of �rst order logi. First order logi extends propositional logiby allowing quanti�ation over individuals in a universe of disourse. The symbolsused are: ∀ meaning �for all� and ∃ meaning �there exists.� Seond order logiallows quanti�ation over sets. Seond order logi is required for full use of realnumbers (least upper bound).We an ombine axioms with a logi system to develop model theory. This use ofthe word model in mathematis is di�erent and more reent than the mathematialmodels one might onstrut to desribe some sienti� phenomenon.
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6.8. LOGIC HOMEWORK 496.8 Logi HomeworkEah problem is worth two points, exept as noted.Given p = �This is a frog.�, q = �It should roak.� Write out in words thefollowing:1. Conditional (p→ q).2. Inverse (∼ p→∼ q).3. Converse (q → p).4. Contrapositive (∼ q →∼ p).5. Bionditional (p↔ q).6. (6 points) Write out in words the indiated onditional statements for thefollowing sentene: �If I get my allowane today, I'm going to buy my favoriteDVD.�(a) Inverse:(b) Contrapositive:() What an you onlude if you are told, �I bought my favorite DVD.�?7. Given a ompound statement: My sister, who ooks whenever she an, lovesooking for people as long as they are appreiative of her labors. Write thisstatement in shorthand, symbolially identifying eah piee.8. Give a ounterexample of: �Bears are large and dangerous to approah.�9. Lots of advertising tries to appeal to a human need to belong. Write oneounterexample for eah of the following suggestive advertisements. �You'll beool if you buy Converse shoes.� �Buy a Lexus automobile, then everyone willbe dripping with envy.�Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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50 NUMBERS LESSON 6. THIS IS A LIE!10. Rewrite the sentene as onditional statement: All squares are rhombi.11. Write the onverse and state if it is true: If you are a driver, then you are atleast 16.12. Form the onverse to: �We'll go to the fair if they announe square-daning overthe radio.�13. �If you go �shing, you are sure to hook a trout.� You bring home a trout forsupper. Did you ath it? Explain your answer.14. Given: �If a golfer has won the U.S. Open Tournament, then [s℄he is in themajor leagues.� What an you onlude about these two people? Tiger Woodswon the U.S. Open Tournament. Bernhard Langer has not won a U.S. OpenTournament.15. What an be onluded from: �If a nail is lost, then a shoe is lost. If a shoe islost, then a horse is lost. If a horse is lost, then a rider is lost. If a rider is lost,then a battle is lost. If a battle is lost, then a kingdom is lost.�?16. See Setion 2.2 of your geometry textbook for further examples. Several prob-lems from prior editions were assigned in the past.17. Base 26 an be fun. Convert your �rst name/nikname from base 26 into base10. Try to restrit your �rst name to 6 letters to avoid 32-bit integer over�ow.Let A = 1, B = 2, ..., Y = 25, Z = 0, ignore upper/lower ase.18. Bonus: Express the numbers 8 through 12 in base −3. Use 0, 1, and −1 asyour digits. Chek out the artile Third Base in the Nov./De. 2001 issue ofAmerian Sientist.©MMIX Ke
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Numbers Lesson 7To Tell the TruthA theorem a day Means promotion and pay!A theorem a year And you're out on your ear! Paul ErdösWe have already seen in Numbers Lesson 1 the relationship between union (dis-juntion) and or as well as intersetion (onjuntion) and and. Here we will alsointrodue various symbols used when drawing logi diagrams, give truth tables in twodi�erent forms for a few other ommon operator, and explore how and and or aresimilar to swithes in series and parallel iruits.Exlusive or is disussed along with DeMorgan's Law, tautology, and ontradi-tion. We lose after touhing on nands, nors, �ip-�ops, and logi equations. First wedisuss a mathematiian world-reknown for his logial development of Geometry.7.1 The Father of Geometry: EulidEulid of Alexanderia was an important Greek mathematiian living around 300b.., his exat lifespan is unknown. Eulid was born in Greee but spent muh of hislife near the great library in Alexandria, Egypt.Eulid wrote the 13 volume series of books known olletively as the Elements. Itbeame the most suessful mathematial textbook ever. Several online versions1 ofthe Elements exist, inluding a wonderful olor version2 from the early 1800's. In theElements Eulid assumes �ve axioms and develops the whole of eulidean geometryfrom them. Eulid's �fth postulate (or variations thereof suh as �through a pointoutside a line one and only one line an be drawn parallel to the given line.�) beamevery ontroversial by the early 1800's. In addition to geometry, many number theoryideas are explored and proven in the Elements. These inlude the form of even perfetnumber and the in�nitude of primes, An algorithm to �nd the greatest ommon fatoralso bears his name. Eulid summarized muh of the known mathematis of his time.1http://aleph0.larku.edu/~djoye/java/elements/elements.html2http://www.math.ub.a/people/faulty/ass/Eulid/byrne.html51
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52 NUMBERS LESSON 7. TO TELL THE TRUTH
Figure 7.1: 2 × n Truth Tables for And, Or, Eor, and Not.

∧ 0 1 ∨ 0 1 eor 0 1 p p0 0 0 0 0 1 0 0 1 0 11 0 1 1 1 1 1 1 0 1 07.2 Truth TablesNumbers Lesson 6 introdued the onept of logial statements and onnetivesused to joined them into ompound statements alled arguments. Here we explorethe onlusion of these arguments as the input statements take on various valuesof true or false. Sine the onnetives we are studying (and, or, if-then, i�) andnegation (not) are truth-funtional (its truth value an be �gured out solely on thebasis of its omponents), we an evaluate these arguments by exhaustively listing allpossible values these inputs may take on. If there are n omponents, there will be 2nrows in the orresponding truth table.Parentheses should be used when ombining multiple ompound statements to-gether with onnetives. If parentheses are omitted, the following order of oper-ation should [generally℄ be assumed: bionditional (highest), onditional, onjun-tion/disjuntion, and negation (lowest).Given in Figure 7.1 are truth tables in the form of multipliation and additiontables. You might ompare these with those found in the homework for lesson 2 formultiplying and adding even numbers.
7.3 Ands, Ors, Exlusive OrsSine the and and or tables above are so similar to the multipliation and addi-tion tables seen earlier, and is often symbolized by • or ∧ (similar to intersetion)and or is often symbolized by + or ∨ (similar to union). | is also often used for or. Bevery areful when programming sine onventions vary widely between programminglanguage! Languages suh as C and C++ introdue additional onfusion by di�eren-tiating between bitwise (operating on eah bit in a string) and logial operators (onlytreating the value as zero or not zero).Augustus De Morgan's (1806�1871) major ontribution to mathematis was re-forming logi and establishing symbolism for algebra. He was the one to de�ne andintrodue mathematial indution, whih up to that point was still unlear. One ma-©MMIX Ke
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7.3. ANDS, ORS, EXCLUSIVE ORS 53
Figure 7.2: Contingeny Table for Two Variables and Many Operators.

p q p q p ∧ q p | q p eor q p→ q p↔ q p ∧ q p ∨ q p eor q p ∧ p p ∨ p0 0 1 1 0 0 0 1 1 1 1 1 0 10 1 1 0 0 1 1 1 0 1 0 0 0 11 0 0 1 0 1 1 0 0 1 0 0 0 11 1 0 0 1 1 0 1 1 0 0 1 0 1jor result known as De Morgan's Law is summarized below in two di�erent formats.De Morgan's Law: (A ∩B)′ = A′ ∪ B′ and (A ∪B)′ = A′ ∩ B′.De Morgan's Law: A ∧B = A ∨B and A ∨B = A ∧ B.The major author debugged a signi�ant number of COBOL programs by hekinglogi of this form.Around the same time, George Boole (1815�1864) was also establishing logi sym-bolism. Boolean Algebra, whih is a foundation for omputers, is an algebra of setswith the operators of union and intersetion. Equivalently it is an algebra with thenumbers 0 and 1 and operators of and and or. More details are available in NumbersLesson 14.As noted above, truth tables appear in two basi forms: 1) as multipliationor addition style tables; and 2) as an exhaustive list of possible values. Take amoment and ompare these truth tables with those obtained in the homework inNumbers Setion 2.11 regarding the addition and multipliation of even numbers.Then, ompare the format used in Figure 7.2 with the format used in Figure 7.1 inthis lesson.Often in a truth table the symbol T for true is used for 1 and the symbol F forfalse is used for 0.Note how neor and the bionditional are the same.Another ommon name for the bionditional is equivalene.If a proposition ontains only 1's (T's) in the last olumn of its truth table, it is atautology. (See p ∨ p in the table above.)If a proposition ontains only 0's (F's) in the last olumn of its truth table, it is aontradition. (See p and ∼ p in the table above.)An argument is valid if it has good logial struture, otherwise it is invalid. Anargument is sound if and only if it is valid and has true premises, otherwise it isNumbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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54 NUMBERS LESSON 7. TO TELL THE TRUTHunsound. One also uses the following terms to identify statement requirements inA implies B: neessary: (B annot be true unless A is true, or su�ient: A an-not be true unless B is true. A fallay uses a false premise, invalid reasoning, orvague/ambiguous language. One also alls a set of statements either inonsistent ifthey lead to a ontradition or onsistent if not. A set of statements is ompleteif one an determine for any ombination of statements a result (i.e. prove it) or elseinomplete. Kurt Gödel, whose biography appears in Se. 14.1, in 1931 showed thatno omplete system that admits the natural numbers (Peano axioms) an be onsis-tent, whih is now known as Gödel Inompleteness Theorem. Thus any usefullogial system must either be inonsistent or inomplete. This derailed attempts toaxiomize all of mathematis.If a proposition ontains both 1's and 0's (T's and F's) in the last olumn of itstruth table, it is a ontingeny.Forming truth tables like this is a ommon way to ompare the validity of twodi�erent statements. Atually, few of the 16 possible ombinations of 0's and 1'sare missing in the table above. A former teaher of the major author added a letoperator to omplete the list�those were his initials!7.4 Logial SymbolsGiven below are three symbols ommonly used to represent inverters (nots) ineletroni diagrams. Note the little irle on the two on the left. The absene of thelittle irle on the one on the right an leave some ambiguity sine the same symbolan be used to represent a non-inverting bu�er (gate expander).
Given below are the orresponding symbols for ands, and ors. An and-gate isequivalent to a series iruit as illustrated in the diagram below right, whereas anor-gate is equivalent to a parallel iruit also illustrated below right.
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7.5. NANDS, NORS, ETC. 55

7.5 Nands, Nors, et.(Earlier we noted p nand q as p ∧ q and p nor q as p ∨ q. In the table below wehave used the symbol ∧∼ for nand, and the symbol ∨∼ for nor.) Compare the nand'sand nor's in the table above with those below. Sine nand's and nor's an serve asinverters (a not), (by tying both inputs to the soure), any logi an be generatedusing one of them exlusively.
∧∼ 0 1 ∨∼ 0 1 neor 0 10 1 1 0 1 0 0 1 01 1 0 1 0 0 1 0 1

7.6 Logi EquationsEletroni logi was implemented as vauum tubes (�valves�) in the early om-puters (1950's, generation 1), and with diodes/transistors (DTL, 1960's, generations2 and 3, with generation 3 being pakaged in integrated iruits (ICs)). The 1970'swere dominated by TTL (transistor-transistor) logi. In DTL the nor-gate was basiwhereas in TTL the nand-gate was basi. A typial basi nor gate and a nand-gatebased Set-Reset �ip-�op are shown below. Many di�erent kinds of �ip-�ops exist:loked, D-type, J-K type, J-K master-slave, edge triggered, et.. (Add link here togood eletroni site.)Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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56 NUMBERS LESSON 7. TO TELL THE TRUTH

Basi TTL nor gate Nand-gate Set-Reset �ip-�opToday, omplex miroproessors utilizing millions even billions of logi gates areroutinely ethed onto silion hips. However, these basi logi gates omposed ofseveral transistors (invented in 1947) are still an important part of the fundamentaldesign. These logi gates are built up into more omplex strutures suh as �ip-�ops, memory elements, [shift℄ registers, ounters, deoders, multiplexors, adders,et. Often many suh miroproessors are ethed at the same time on one big silionwafer. The Pentium 4/D and Core 2 by INTEL now running at speeds of about4 GHz! demonstrate amazing tehnologial progress.Some omputers of the 1960's and 1970's (SDS/Xerox Sigma) were doumentedusing logi equations. A typial logi equation might read as follows: NFARWD=I. OU6.(O4.O5.NO6) (This an be interpret to say that the negation of the signalrepresenting the family of read/write diret instrutions (hexadeimal operation odes.6C or .6D) is generated by the upper nibble being a 6 and the lower nibble being.C (lowest order bit being ignored). Here, hex is indiated by the leading period.)A logi diagram is also shown below right. Note how in diagram form this takes upadditional spae and uses graphi symbols. The logi equation format is very ompatand was easily printed using 1960's tehnology.
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7.7. TRUTH HOMEWORK 577.7 Truth HomeworkEah problem is worth two points. For problems 1 and 2 assume these aresyllogisms and the major and minor premises are true.1. Determine whether eah argument is valid or invalid. If invalid, determine theerror in reasoning.(a) If I inherit $1000, I will buy you a ookie. I inherit $1000. Therefore, Iwill buy you a ookie.(b) All ats are animals. This is not an animal. Therefore, this is not a at.2. Determine whether eah argument is valid or invalid. If invalid, determine theerror in reasoning.(a) If Alie drinks the water, then she will beome sik. Alie does not drinkthe water. Therefore, she does not beome sik.(b) If Ron uses Valvoline Motor oil, then his ar is in good ondition. Ron'sar is in good ondition. Therefore, Ron uses Valvoline Motor oil.3. Form a valid onlusion from the following statements.(a) If I am tired, then I annot �nish my homework. If I understand thematerial, then I an �nish my homework.(b) Everyone who is sane an do logi. No lunatis are �t to serve on a jury.None of your sons an do logi.4. Form a valid onlusion from the following statement: No kitten that loves �shis unteahable. No kitten without a tail will play with a gorilla. Kittens withwhiskers always love �sh. No teahable kitten has green eyes. No kittens havetails unless they have whiskers.5. Help Keith �nd the sugar addit from a truth table of the following statements:Keith: Three of you are always right. Who took my oatmeal pie ookies?Aurora: It was either Rita or Shirleen.Rita: Neither Jenny nor I took it.Shirleen: Both of you are wrong.Jamie: No, one is wrong; the other is right.Jenny: No, Jamie, that's not right.6. Fill in the truth table:
p p p∧∼ p p∨∼ p p0 01 1Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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58 NUMBERS LESSON 7. TO TELL THE TRUTH7. Construt a truth table for: a) p ∧ q b) p ∧ q
p q p q p ∧ q p ∧ q0 00 11 01 18. Construt a truth table for: [(p | q) ∧ r] ∧ r.

p q r p | q r (p | q) ∧ r [(p | q) ∧ r] ∧ r0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1Use the following variation on the lassi nursery rhyme for the next four ques-tions: When I was oming from St. Ives, I meet a man with 7 wives. Eahwife had 7 saks. Eah sak had 7 ats. Eah at had 7 kits. Kits, ats, saks,and wives, how many were going to St. Ives. (A similar problem dates bak toFibonai.)9. Express this quantity in base seven.10. Calulate the quantity in base ten.11. Convert the base 7 quantity into base 10.12. How does this ompare with the answer to the traditional wording (going to).13. Construt a �truth table� for the multipliation of positives and negatives.14. Draw Venn diagrams illustrating DeMorgan's Laws.15. See Setion 2.3 of your geometry textbook for further examples. See espeiallyproblems 2.3: 10�13.16. Bonus: Relative to rore, �nd out what numbers the following Hindu termsrefer to: lakh, neel, padma, shankh.©MMIX Ke
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Numbers Lesson 8Beyond the Integers: FrationsFive out of every four Amerians has problems with frations!Seen on a tee shirtThis lesson moves us beyond the integers by introduing the rational numbers.We explore the axioms whih make groups before exploring the parts of a frationand every type of fration imaginable. We ontinue with a review of the addition,subtration, multipliation, and division of frations before touhing on ratios, pro-portions, and ross multipliation. First we talk about a mathematiian previouslyintrodued.8.1 Father of Aoustis: Marin MersenneMarin Mersenne (1588�1648) was a 17th entury Frenh monk best known forhis studies of numbers of the form 2n − 1. Mersenne was a well-eduated theolo-gian, philosopher, and musi theorist. He edited works of Eulid, Arhimedes, andother Greek mathematiians. His more important ontribution to the advanement oflearning was his extensive Latin orrespondene with mathematiians and sientistsin many ountries. Sienti� journals had not yet ome into being so Mersenne wasthe enter of a network for exhange of information.Mersenne ompiled a list of Mersenne numbers he thought to be prime. His listwas only partially orret. It inludedM67 andM257 whih are omposite and omitted
M61,M89,M107 whih are prime. Here we are referring to the number 2p−1 asMp. Ittook two enturies to resolve these issues and even yet many fundamental questionsabout these numbers remain. Questions suh as if there is a largest Mersenne primeremain unanswered although it is suspeted there are an in�nite number of Mersenneprimes. 59



60 NUMBERS LESSON 8. BEYOND THE INTEGERS: FRACTIONS8.2 Group AxiomsIt is useful at this time to introdue and disuss the group axioms.1. Closure: if {a, b} ∈ G, then a • b ∈ G and is unique.2. Assoiativity: if {a, b, c} ∈ G, then a • (b • c) = (a • b) • c.3. Existene of unit element (identity): i ∈ G, i • a = a • i = a, ∀a ∈ G.4. Existene of inverses: ∀a ∈ G, ∃ an element denoted a−1 ∈ Gsuh that a • a−1 = a−1 • a = i.Groups are an important mathematial struture whih form the basis of thestudy of abstrat algebra, known to mathematiians as just algebra. The axiomsabove depend of the onept of a set G with elements a, b, c, et. and one operation(• above) suh as addition, multipliation, re�etion, et.Note how the familiar set of natural numbers are losed under both addition andmultipliation (axiom 1). Both multipliation and addition are assoiative (axiom 2),and eah has an identity element (axiom 3). The additive identity element is zero(0), whereas the multipliative identity element is one (1).Group axiom 4 requires inverses. We have seen our number system �grow� fromnatural numbers to integers when the operation of subtration (additive inverses)was introdued. When the operation of multipliation is used and the onept ofmultipliative inverses is required, the onept of division is the result and the numbersystem must now inlude frations.An important restrition, the fat that 0 has no multipliative inverse, will bedeveloped later in Numbers Lesson 9. We thus see that the integers form a groupunder addition, but not under the operation of multipliation!
8.3 Parts of FrationsWe introdued division in Numbers Lesson 2, but only in the ontext of integersand remainders.If you have ever shared an apple with someone, the onept of half should bewell developed. Former president George Bush (number 41) was niknamed �Havehalf� early in life for this reason. In suh a situation, we are dividing one integer by©MMIX Ke
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8.4. TYPES OF FRACTIONS 61another, often larger, integer.A rational number is a number whih an be expressed as the ratio of two integers.The set of rational numbers is denoted by Q, as in quotient.A vinulum is an overhead line as is used for frations, radials, and for repeatingdeimal frations. The plural is vinula.The numerator is the portion of a fration above the vinulum.The denominator is the part of a fration below the vinulum.Perentage is the numerator of a fration with a denominator of 100.Millage or permille is the numerator of a fration with a denominator of 1000.Perentages are written with a perent sign (%) and permille are written with apermille sign (%� or ppk). Similar higher order frations are parts per million (ppm),parts per billion (ppb), and parts per trillion (ppt). Note: there is some ambiguityassoiated with ppt�it may oasionally represent ppk. These are espeially usefulfor speifying trae amounts or small relative unertainties.Example: Lead is a heavy metal whih an aumulate in the body. The EPA(Environmental Protetion Ageny) has set a limit of 15µg/liter in water whih or-responds to 15 ppb sine a liter of water has a mass of 1Kg=1000 g.Example: Calkins reported in Physial Review A 73, 032504 in Marh 2006the value 335 116 048 748.1(2.4) kHz for the D1 entroid for esium. His unertaintywas thus 2.4/335 116 048 748.1 = 7.2 × 10−12 or about 7 ppt. When ombined withother measurements it gave a QED-free value for the �ne-struture onstant α−1 =

137.036 0000(11) or about 8 ppb.8.4 Types of FrationsA unit fration is a fration with a numerator of 1.Historially, unit frations were the �rst to be developed. Anient Egyptians wouldadd long series of unit frations to generate other values. It was a histori event when2/3's ame into usage! An appliation of unit (Egyptian) frations will be examinedin the homework. Today, frations ome in many forms: mixed numbers, improperfration, deimal frations, et.An improper fration has a numerator larger (in magnitude) than the denomina-tor, a proper fration does not.An interpretation of improper frations is that the denominator says how eahNumbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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62 NUMBERS LESSON 8. BEYOND THE INTEGERS: FRACTIONSwhole piee is divided, and the numerator says how many total piees we have. Im-proper frations are quite aeptable in high shool and beyond and are, in fat, oftenthe preferred form of answer. Too bad elementary/middle shool teahers alwaysonsider them wrong! However, in their defense, for those less numerially inlined,onverting to a mixed number may give a better sense of the number's magnitude.(Converting to a deimal approximation doesn't neessarily do that so learly!)A mixed number has an integer part and proper fration part.A mixed number is generated by dividing the denominator into the numerator todetermine how many whole parts there are. The remainder is the numerator of thefrational part.A omplex fration has frations in the numerator or the denominator.Partial frations desribes a tehnique for splitting a fration into piees.This tehnique will be more formally introdued in Algebra II and is often usedin Calulus to simplify a omplex expression for ease in integration.
5

63
=

−49 + 54

63
=

−7

9
+

6

7
and 5x− 1

x2 − x− 2
=

2

x+ 1
+

3

x− 2
.Here is an example of a ontinued fration: 2 +

1

2 + 1
2+ 1

2+...Continued frations an arise due to reursive de�nitions. Consider the exampleabove as the solution to the equation: x = 2 + 1/x or x2 − 2x− 1 = 0 or x = 1 +
√

2.Early methods of expressing and extrating square roots depended on this method soit was well developed. It an also be useful for �nding integer solutions.8.5 Operations with Frations8.5.1 Simplifying (or Reduing) FrationsSome examples on how NOT to simplify frations are as follows:
19

95
=

1

5
or 13

130
=

1

10
.Yet this, perhaps in a slightly more ompliated situation, is a very ommonmistake. Our Algebra II book alls it �freshman anellation!� Consider what disasterhappens when this was done to the examples below. If in doubt, try letting x = 2 andompare the before and after results. You an only anel out fators, where a fatormultiplies everything, not terms, where terms are parts of expressions onneted by©MMIX Ke
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8.5. OPERATIONS WITH FRACTIONS 63addition and subtration.
2x

x+ 1
or x+ 3

x− 5
.8.5.2 Addition and SubtrationWhen adding and subtrating frations, the �rst step is to get a ommon denom-inator. After that the numerators are ombined. To get a ommon denominator,determine the Least Common Multiple. Then multiply eah respetive fration's nu-merator and denominator by a speial form of 1 (our multipliative identity) to getthe LCM.

2

3
+

4

5
.The LCM = 15, so multiply eah fration by 1 so the denominator beomes 15.

2

3
· 5

5
+

4

5
· 3

3
.Then you add or subtrat the numerators, depending on the operation.

10 + 12

15
=

22

15
= 1 7

15
.8.5.3 Multiplying FrationsTo multiply frations, the rule is to multiply the numerators together and thedenominators together. Eah produt is put in its orresponding loation.

10

11
· 22

5
=

220

55
= 4.Of ourse, after you are done multiplying (or adding, et.), you should alwayssimplify!!! Another way to do it is to redue as you go:

10 2

11 1
• 22 2

5 1
=

4

1
= 4.8.5.4 Dividing FrationsIn order to divide frations, reiproals are useful.The reiproal of a number is it's multipliative inverse.For frations, this an be obtained by exhanging the numerator with the de-nominator. The x−1 key on the alulator does this as well. Whole numbers arenonnegative frations with a denominator of 1. (Thus unit frations are the reipro-als of whole numbers.) Division is equivalent to multiplying by the reiproal. Onmany very early omputers, this was the only form of division implemented!Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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64 NUMBERS LESSON 8. BEYOND THE INTEGERS: FRACTIONS
Example: 2

3
divided by 1

6
. 2

3
÷ 1

6
=

2

3
· 6

1
= 4The reason an be seen by simplifying the omplex fration.

2
3
1
6

=
2·6
3·1
1·6
6·1

=
2·6
3·1
1

=
2 · 6
3 · 1 = 48.6 Ratios and ProportionsRatios are two numbers with the same units ompared. Sometimes they arewritten like 2:1 or 6:3 where the olon symbolizes that the 2 is ompared with 1.Most frequently, ratios are written as division: 2/1 or 6/3. When there are morethan two numbers involve it is alled an extended ratio. Here are some examplesenountered using ratios:

• An oean has more water than a lake.
• Enlarging a piture.
• Peter and Paul drove equally fast, but Mary drove twie as far.
• The Tigers are better hitters than the Cubs.
• Tasha is for the metri system beause she will be taller in entimeters than ininhes.
• The triangle has side length ratios of 3 : 4 : 5.Proportions are two or more ratios set equal: 2

6
=

1

3
=

12

36
. When there aremore than two ratios, it is usually alled an extended proportion. If a proportionhas a missing term, we an simply ross-multiply and solve for the missing term.Example: x

16
=

1

4
beomes 4x = 16 whih gives x = 4.8.7 Cross-multipliationCross-multipliation is atually a short-ut for multiplying eah ratio by aspeial form of 1 involving the other denominator. In other words, you multiply thenumerator of one fration by the denominator of the other and vie versa (Latin fororder opposite; then set these produts equal to eah other. (See example justabove.)
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8.8. FRACTION HOMEWORK 658.8 Fration HomeworkEah problem is worth two points. SHOW WORK, espeiallyon problems 2�6.1. Use Pasal's Triangle and the Binomial Theorem to expand (2x+ 3)6 by exam-ining (2x+ 3)2, (2x+ 3)3, . . .2. Simplify ompletely using a ommon denominator: 1

7
+

1

11
.3. Simplify ompletely using a ommon denominator: 1

7
+

1

13
.4. Simplify ompletely using a ommon denominator: 1

11
+

1

13
.5. Simplify ompletely using a ommon denominator: 1

7
+

1

11
+

1

13
.6. Simplify ompletely using a ommon denominator: 9

143
+

18

77
+

8

91
.7. Find 25% of 16.8. Find 250% of 16.9. The owner of a house with a state equilized value of $50,000 (the value used fortax omputation purposes and whih should not exeed half the market value)must alulate how muh a proposed 2 mill road improvement tax will ost him.Help him!10. Express the number 2.7 as: a) an improper fration; b) a mixed number.11. Divide 50 by 1

2
then add 3.12. Convert 22

7
exatly into a deimal fration.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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66 NUMBERS LESSON 8. BEYOND THE INTEGERS: FRACTIONS
13. Simplify ompletely: 2

3
+ 1

2
5
12

− 1
4

.14. Simplify ompletely (fator and anel ommon terms): 6

35
× 15

22
× 77

9
.15. Simplify ompletely: 35

17
÷ 15

34
× 6

7
.For problems 16�18:Egyptian fration is another name for unit fration. In anient Egypt, thesewere the only frations allowed. Other frations between zero and one werealways expressed as a sum of distint Egyptian frations. The greedy algo-rithm was ommonly used to render frations, suh as 3

5
, into unit frations.The algorithm begins by �nding two onseutive unit frations that the givenfration is between (1

2
< 3

5
< 1

1
). Using the smallest fration, subtrat it fromthe given fration. This new number plus the smaller fration is the result. Thegreedy Egyption number for 3

5
is 1

2
+ 1

10
(3

5
− 1

2
= 6

10
− 5

10
= 1

10
). Of ourse, thereis no guarantee the result is a unit fration, so more than 2 frations may wellbe required. (See MMPC 1996, part II, problem 1.)16. Expliitly show how 1

2
+

1

10
=

1

3
+

1

4
+

1

60
.17. Find the greedy representation for 2

13
.18. Find the greedy representation for 9

10
.19. Using your orreted list of the �rst 15 Fibonai Numbers from homework2 problem 3, �nd the approximate deimal ratio of onseutive pairs. Bonus:what is the exat limiting value this approahes?20. Write the word name for the number whih orresponds to 225 −1. Express thisnumber in binary, hexadeimal, and base 10.21. Read setion 11.2 of your geometry textbooks for further examples for Lesson7. See espeially problems 12�17.©MMIX Ke
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Numbers Lesson 9More on FrationsNo one shall expel us from the Paradisethat Cantor has reated. David HilbertThis lesson presents order of operation for arithmeti, number lines, rules forsolving inequalities, and long division. The lesson ontinues with a disussion ofdeimal fration, onentrating further on what makes a fration repeat or terminate.A setion on �nding exat rational expressions for repeating deimals is followedwith a disussion on division by zero. We onlude the lesson with a proof that therationals are ountably in�nite. This proof dates bak to Cantor who is featured ina biography.9.1 Father of Set Theory: Georg CantorGeorg Ferdinand Ludwig Philipp Cantor (1845�1918) was a German mathemati-ian best known for reating set theory. We will introdue those axioms in Lesson 14.Cantor developed a one-to-one orrespondene between various sets but not others.In this way Cantor proved the real numbers unountable or nondenumerable via adiagonalization argument we will also present in Lesson 14.Cantor's work raised many philosophi questions and met with serious objetionsby his fellow mathematiians. Cantor su�ered from depression after about age 40,depression likely bipolar in nature, but at the time blamed on the ridiule from hisolleagues. Inonsistent proofs due to unlari�ed assumptions has also been ited as aontributing fator. The philosophi di�erenes espeially with Kroneker (See quoteat the beginning of Lesson 2) lead to a paradigm shift in mathematis toward usingset theory as foundational. The harsh ritiism of his work gave way to internationalaolades by age 60. Long periods of depression limited Cantor's work during thelater years of his life with World War I foring poverty and malnutrition before hedied in a sanitarium (mental institution).67



68 NUMBERS LESSON 9. MORE ON FRACTIONSCantor established an unending sequene of larger in�nities. Power sets play akey role in this development. He believed his work on trans�nite numbers to havebeen ommuniated to him by God. Cantor established a one-to-one orrespondenebetween the points on the unit line segment and all the points in an n-dimensionalspae about whih he said: �I see it but I don't believe it!� Cantor is also known forthe ontinuum hypothesis, also disussed in Lesson 14, that no set has more membersthan the natural numbers and less members than the real numbers.9.2 Order of OperationsWe have already assumed that multipliation ours before addition and exponen-tiation before that in Numbers Lesson 5 on bases: 314 = 3× 102 + 1× 101 + 4× 100.We will summarize these rules here as follows.1. Operations within symbols of inlusion are done �rst.2. Exponentiation is done next right to left if staked.3. Multipliation and Division are then performed in order left to right.4. Addition and Subtration are next performed in order left to right.The most ommon symbols of inlusion are alled parentheses ( ), but brakets[ ℄, braes { }, vinula (plural of vinulum), and others (absolute value, radials) arealso enountered. Some disussion regarding order of exponents is in order. Althoughmathematiians for enturies have learly intended 223

= 28 = 256 and not 43 = 64,programming languages suh as Fortran and C and graphing alulators have notbeen as onsistent. The same alulator may be shizophreni and do it both ways,depending on the irumstanes. (Compare 4 ∧ 2−1 using the x−1 key on the TI-84with 4 ∧ 2 ∧ −1!)Be sure to use parentheses whenever enountering staked exponents.The rules above are often remembered via the mnemoni (from the Greek meaningamemory aid): PEMDAS� Please ExuseMyDearAunt Sally or Please EatMissDaisy's AppleSaue. Pink Elephants May Dane And Sway.Rule number 3 above deserves a little more ink sine really only purists, omputersientists, algebrai alulators, and perhaps high shool teahers seem to rigorouslyadhere to it. Consider expressions suh as 3/2π or 3/2 π where impliit multiplia-tion might our. Some textbooks, espeially those beyond the high shool level, andmost high-level math/physis journals assume the 2 is �rst multiplied by the π in the�rst example, but not in the seond. It is for this reason that I highly reommend©MMIX Ke
iθ G. Calkins Otober 4, 2009 Numbers and Their App.�pdf 4



9.3. NUMBER LINE 69against the use of a solidus (/) and for the use of a vinulum (�) espeially whenhandwriting frations. �No authority derees this, ...[but℄ this one rule [multipliationindiated by juxtaposition is arried out before division℄ is not universal agreementat the present time, but probably is growing in aeptane.�1 When a student answeris an order of magnitude too large I quikly hek to see if a π in the denominatorwandered �upstairs� due to the lak of parentheses. One an add to this the lak ofagreement beyond the high shool level in evaluating −1n. Are we exponentiatingnegative one, or negating one raised to the n. If n is even, these will di�er! Again,purists and alulators following the prosribed order of operations will exponentiatebefore negating, whereas the other may be intended in some irumstanes. Thisproblem originates beause the negative symbol (−) serves three funtions (subtra-tion, negation, and additive inverse).9.3 Number LineA ommon onvention for organizing sets of numbers is to use a number line.Some number line onventions will be noted as follows:1. A number line has larger numbers to the right and smaller numbers to the left.At its enter is zero.2. The integers are usually marked o� with tik marks and labelled.3. Sine numbers go on forever, but paper doesn't, arrows are put on eah end.Number lines an be used to show the solution set to ertain problems, espeiallythose with in�nite solution sets. A sample number line is diagrammed below.
-5 0 59.4 InequalitiesMathematis deals not only with equality (=) but also with �ve inequalities <, ≤,

6=, ≥, and > known respetively as less than, less than or equal to, not equal, greaterthan or equal to, and greater than. The big end or opening points toward the biggerquantity. (The alligator is eating the big one, some of my students tell me.) Two ofthese (<,>) are known as the strit inequalities, beause they do not inlude theend points. All inequalities but 6= are alled order inequalities. Number lines areuseful to onvey suh ideas as x > 2. To do this, another number line onventionshould be noted.1Dr. Math: http://www.mathforum.org/library/drmath/vie/57021.htmlNumbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
iθ G. Calkins
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70 NUMBERS LESSON 9. MORE ON FRACTIONS4. If a point is to be exluded at the end of a group of numbers on the numberline, an open irle is used. Thus, a losed irle indiates inlusion of theendpoint. Alternatively, a parenthesis is used to indiate exlusion and a braketto indiate inlusion. This onvention is rooted in the pratie of speifyingintervals as open, losed, or even half-open, suh as 2 < x ≤ 5 as (2,5℄ shownbelow.
-5 0 5It should always be lear from ontext whether an expression suh as (3, 5) refersto an ordered pair (See Numbers Lesson 13) or the open interval 3 < x < 5.Inequalities are algebraially treated muh like equalities (what you do to oneside, do also unto the other).When an inequality is multiplied or divided by a negative number, thediretion the inequality points is reversed.

1 − x > 2

−x > 1

x < −1

subtrat 1 from both sidesmultiply by −1 both sides and reverse the inequality9.5 Long DivisionDivision is usually the last of the four basi operations (+,−,×,÷) to be mastered.Division is the inverse operation of multipliation, but has an important exeption asdisussed below.The division of one number by another an be represented as a fration with thedividend as the numerator and the divisor as the denominator. One an simplify thefration before doing the long division involved.(Reminder: The divisor is out in front of the �box�, the dividend is under it andthe quotient is on top of the �box�).
Divisor

Quotient R Remainder
|Dividend

.An example of a division problem is 441÷ 12. After reduing, this is the same as
147 ÷ 4 or the fration 147

4
. To �nd the quotient (or to �nd its mixed number), wedivide thusly.

©MMIX Ke
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9.6. DECIMAL FRACTIONS 71
36.75 (or 36 R3 or 36 3/4)

4 |147.00
12
27
24
3 0
2 8

20
20
0

9.6 Deimal FrationsFrations are often expressed with fairly arbitrary denominators: 1
2
, 3

4
, 2

3
. To om-pare them in magnitude, it is helpful to line them up on a number line: 1

2
< 2

3
< 3

4
.To quantify the di�erene between them, it is helpful to hange the denominator tobe 10 or a power of ten. Suh frations are alled deimal frations or often justdeimals.

1

2
=

5

10
= 0.5

2

3
= 0.66666 . . .

3

4
=

7.5

10
=

75

100
= 0.75So 2

3
is loser to 3

4
than to 1

2
. Of ourse, if we obtained a ommon denominatorof 12, that would have been lear as well: 6

12
< 8

12
< 9

12
. The hoie of base 10 isvery ommon, although basimal frations related to powers of two are ommonlyenountered with omputers. In fat a marvelous algorithm2 for alulating π wasreently disovered, but involves hexadeimal frations only.9.7 Repeating/Terminating DeimalThe number of digits in the repeating unit of a nonterminating but repeatingdeimal fration is an area of interesting study. The biggest unit fration (i.e. smallest2 http://www.mathsoft.om/asolve/plouffe/plouffe.htmlNumbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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72 NUMBERS LESSON 9. MORE ON FRACTIONS
denominator) with muh interest is 1

7
= .142857 142857 · · ·. As an be seen in thetable below, all multiple of 1

7
have the same digits in the same order, just a di�erentstarting point.

1
7

0.142857
2
7

0.285714
3
7

0.428571
4
7

0.571428
5
7

0.714285
6
7

0.857142In an earlier homework, you already did the equivalent of �nding the deimalfration for 1/7 (7 into 1,000,000; NL1). Note how there an be seven di�erentremainders (0�6) when dividing something by 7. However, if the remainder of 0 isobtained, the fration terminates (i.e. 7

7
= 1.0). This is part of the reason the ylelength is six for the fration 1

7
. In today's ativity you will derive the exat deimalfrations for 1

17
and 1

19
whih exeed the alulator's auray. Of ourse you ouldalso attempt this by long division like your teaher did sine alulators were notommon until he was in high shool.Terminating deimals are deimals that have an ending. These numbers do not goon forever or repeat. They are learly rational numbers sine you an express them asthe ratio of two integers: the deimal values over the power of ten (what the last digitof the deimal represents). Don't forget to redue, beause this result is not unique.For example, you ould multiply the numerator and denominator by 2. It shouldbe lear that frations with denominators ontaining only powers of 2 and5 (the prime fators of our base 10) terminate, whereas those ontainingother prime fators do not.

0.115 =
115

1000
=

23

200

43.336 = 45
336

1000
= 45

42

125

0.14641 =
14641

1000009.8 Finding Integer Ratios for Repeating DeimalsKnowing all repeating deimals are rational numbers, or the ratio of two integers,leaves us with the task of �nding these integers when presented with an arbitrary©MMIX Ke
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9.9. DIVISION BY ZERO 73example.Suppose you are asked to �nd two integers whose ratio is 0.586586 · · · = 0.586.One way is to use the FRAC key on your alulator, but another involves just a littlealgebra.Let
1000 = 103 was hosen sine thereare three repeating digits.Subtrating o� the originalWe are left with thisor

1000x = 586.586586 · · ·

1x = 0.586586 · · ·

999x = 586.000 · · ·
x =

586

999For fun, you might try this method on 0.143434343 . . . = 0.143 = 142
990

!9.9 Division by ZeroWe stated in Numbers Lesson 8 that zero does not have a multipliative inverse.This is equivalent to the onept that zero multiplied by anything is always zero. Ifwe examine this further, we disover that sometimes things are not quite exatly zeroand if multiplied by something big enough, unity will result. Examine the sequene of
0.1×10 = 1; 0.01×100 = 1; 0.001×1000 = 1; . . . Next examine the same thing but as adivision problem: 1÷0.1 = 10; 1÷0.01 = 100; 1÷0.001 = 1000; .... The denomonatorapproahes zero and the quotient approahes ∞. However, if we approah zero fromthe other side: 1 ÷ −0.1 = −10; 1 ÷ −0.01 = −100; 1 ÷ −0.001 = −1000; . . . theresult is at the other �end� of our number line. For this reason, it is usual to alldivision by zero unde�ned (ill-de�ned). For some appliations, it is useful to join ournumber line at the two in�nities, thus losing our unbounded interval! Thus theomplete number line (interval between plus and minus in�nity) is termed both openand losed.9.10 The Rationals are CountableAnother important onsideration is how many rational numbers are there? Theanswer may surprise you. Start by listing the natural numbers with one as a de-nominator. For every suessive row, inrease the denominator. Then you will haveompleted a hart ontaining all the positive rational numbers.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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74 NUMBERS LESSON 9. MORE ON FRACTIONS1/1 2/1 3/1 4/1 5/1 · · ·1/2 2/2 3/2 4/2 5/2 · · ·1/3 2/3 3/3 4/3 5/3 · · ·1/4 2/4 3/4 4/4 5/4 · · ·1/5 2/5 3/5 4/5 5/5 · · ·1/6 2/6 3/6 4/6 5/6 · · ·... ... ... ... ... . . .Some of them appear more than one (1/2 = 2/4 = 3/6 = · · ·). We then ountthe frations in this order: 1/1, 2/1, 1/2, 1/3, 2/2, 3/1, · · ·. Sine we have put the nat-ural numbers into a one-to-one orrespondane with the positive (unsigned) rationalnumbers, they are ountable or there are �just as many� as natural numbers. This isommonly reognized as the lowest order of in�nity, or ℵ0 or aleph null. There areother arrangements possible, suh as sorted by �height� (numerator plus denomina-tor) then by numerator, for example. However, frations annot be put in a stritlyinreasing order, beause in between eah pair is always another! The rational num-bers are thus termed dense. However, we will see in Lesson 11 there are still gapsbetween them!
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9.11. PEMDAS HOMEWORK 759.11 PEMDAS HomeworkEah problem is worth two points, exept as noted for problem 121. Compare in magnitude the deimal representations for: 22/7, 355/113, and π.2. Put in order from least to greatest: 0.1958, 0.1958, 0.1958, 0.1958, 0.1958.3. Convert 468.468468 · · · into the ratio of two integers.4. Find a rational number between 2
7
and 1

3
.5. Simplify: 3 × 15 + 2 × 6.6. Simplify: 2 × 6 + 32 ÷ 42 + 5.7. Simplify: 4 × [2 − 3(x+ 1)2] × (2 − 10 ÷ 5).8. Solve for x and graph on a number line: 14 − 3x < 13.9. Solve for x and graph on a number line: 2x− 4 > −11(x− 2).10. Expand and simplify: (2x− 3y)(2x+ 3y).11. Fator ompletely: a) x2 + 9x+ 20; b) x2 + 8x− 20.

Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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76 NUMBERS LESSON 9. MORE ON FRACTIONS12. Calulate the exat deimal representation of the unit frations (See Setion8.4) with denominators 2 through 21. Clearly indiate the length of the partwhih repeats or whether it terminates (rep.len.=0). Can you �nd any patternto the repeat lengths? This problem is worth 17 points.Fration Deimal Value Terminates Non-rep. Len. Repeat Len.1/2 0.5 yes 1 01/3 0.3333 · · · no 0 11/41/51/6 0.1666 · · · no 1 11/71/81/91/101/111/121/131/141/151/161/171/181/191/201/21
©MMIX Ke
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Numbers Lesson 10Sienti� Notation, Signi�antFigures, et.An approximate answer to the right question is worth a greatdeal more than a preise answer to the wrong question. John TukeyThis lesson is devoted to auray, preision, sienti� notation, signi�ant �gures,and the importane of rounding vs. trunating. It ends with setions on ommon unitof measurement and unit onversions with an emphasis on metri/English equivalents.Our biography for this lesson is on Pasal.10.1 Miserable Infant Prodigy: Blaise PasalPasal was born, lived, and died in Frane (1623�1662). He is onsidered a Frenhphilosopher, mathematiian, and physiist and one of the greatest minds in westernintelletual history. He was the only son of a judge with some sienti� bakground.His early training was restrited to languages and muh of his later life was devotedto religious exerises. By age 12 he disovered geometry, read Eulid's Elements, andame up with some original proofs. By age 14 he was attending weekly meetings offamous mathematiians, by age 16 he wrote a paper on oni setions, and by age18 started work on a mehanial adding mahine. In orrespondene with Fermat heestablished the theory of probability. This ontributed greatly to the developmentof the �elds of atuary, mathematis, soial statistis, and physis�not to mentionhelping his friends with their gambling!Pasal did researh on pressure and invented the syringe. He advoated empirialexperimentation and the aumulation of sienti� disoveries. Analyti, a priorimethods were the norm in those days. A run-away horse arriage aident at age31 further destablized his deliate health and lead him toward religion and awayfrom siene and math. The triangle of binomial oe�ients, a omputer language, apressure law, and the SI unit of pressure are all named after Pasal.77



78 NUMBERS LESSON 10. SCIENTIFIC NOTATION, SIGN. FIGURES, ETC.
X X

X

X

XXXX XXXX XX
X

X

Figure 10.1: Auray versus Preision Targets. Left: no auray, nor preision.Left Middle: aurate and preise. Right Middle: preise, but not aurate. Right:aurate, but not preise.10.2 Auray vs. PreisionAuray is a measure of rightness. Preision is a measure of exatness.Versus (vs.) is Latin for against or faing. Auray and preision, although sim-ilar in meaning, have a very subtle di�erene important to mathematis and sienein general and statistis spei�ally. You an have one without the other, neither, or,best of all, both together. As you an see below, preision has to do with repeatabil-ity, how well your results an be reprodued. Here is an example involving e. It isan important number we will study further in Numbers lesson 15. It is also on yourgraphing alulator is several plaes.e= Aurate? Preise?27 no no2.18281828 no yes2.72 yes within 1 ppk no2.718281828 yes within 1 ppb yesFigure 10.1 illustrates what auray and preision might mean in the ase of adart board with darts. The table below illustrates the same ideas with words.Darts Aurate? Preise?Randomly spread far from the bull's eye no noClustered inside the bull's eye yes yesClustered outside the bull's eye no yesUnlustered but inside the bull's eye yes noA ommon measure of preision is the standard deviation or unertainty. We willdisuss standard deviation more in the upoming Statistis letures. Unertainty isthe magnitude of error that is estimated to have been made in the determination ofresults. It is now ommon to state results in the form: measurement (unertainty)units. Preision an also be thought of in terms of repeatability.©MMIX Ke
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10.3. SCIENTIFIC NOTATION 79Example: Consider the results from the author's dissertation available athttp://etd.nd.edu, lik on searh, enter Calkins as last name, and lik now on thesearh button below. We reported there our 2005 results of the esium D1 transitionentroid frequeny as: 335 116 048 748.2(2.4) kHz. Basially, the 2.4 kHz is sayingwe are about 68% on�dent that the true value is with ±2.4 kHz of the reported valueof 335.116 048 7482 THz (about 894.5 nm or in the infrared).10.3 Sienti� NotationIn siene, numbers large and small are ommonplae and a shorthand notationall sienti� notation was developed to simplify their spei�ation and utilization.It is based on plae value and base ten. Reall that 101 = 10; 102 = 100; 103 = 1000and 3 × 100 = 300 = 3 × 102 or 103 × 81 = 8.1 × 104.A number is in sienti� notation if it is in the form: Mantissa ×10characteristic,where the mantissa (Latin for makeweight) must be any number 1 through 9.9, andthe harateristi is an integer indiating the number of plaes the deimal moved.The manissa might sometimes be alled a oe�ient. The term mantissa is moreommonly applied to the deimal frational portion of a logarithm.Examples of sienti� notation:92,900,000 miles beomes 9.29 × 107 miles (earth-sun distane).Plank's Constant: .000000000000000000000000000000000663 Js is 6.63 × 10−34 Js3141592653 is approximately 3.1416 × 109.6,600,000,000,000,000,000,000 tons is 6.6 × 1021 (6.6 sextillion) tons or the �mass� ofthe earth.Note the use of the EE key on alulators and an E on omputer printouts inreferene to sienti� notation. 3.14E9 is the same as 3.14 × 109. D may also beseen indiating use of double preision (typially 64 instead of 32 bits of preision).An easy way to remember when hanging number into sienti� notation is: if themantissa is a smaller number in magnitude than your deimal value, then the har-ateristi will be a positive number. If the mantissa is a larger number than yourdeimal value, then the harateristi will be negative. Keep this hint in mind as youhange from sienti� to deimal notation.Example: 5.43 × 10−3 = 0.00543, sine the harateristi is negative, you knowthe deimal number is smaller than 5.43, so you move the deimal left. Anotherexample: −0.000002 = −2 × 10−6.10.3.1 Operations with Sienti� NotationWhen adding numbers in sienti� notation, the harateristis must be the same.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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80 NUMBERS LESSON 10. SCIENTIFIC NOTATION, SIGN. FIGURES, ETC.
2.3 × 105 + 4.55 × 103

230 × 103 + 4.55 × 103 = 234.55 × 103

2.3455 × 105 ≈ 2.3 × 105

The easiest way is to derease the largerharateristi by rewriting the mantissa!After rewriting and adding, rewrite insienti� notation.Results rounded aording to rules givenbelow.Notie what happens when you add the following together: 8.23×1017, 4.67×1012,and −1.05 × 10−12!The same method is used when subtrating numbers in sienti� notation! Here,however, if they are lose in value loss of signi�ane may result�the answer maybe nonsense! When multiplying numbers in sienti� notation, add the harateristisand multiply the mantissas. Division is similar, divide the mantissas and subtrat thedenominator's harateristi from the numerator's harateristi. Always onvertthe answers bak into proper sienti� notation form.Example: 8.1 × 10−3 × 2 × 105 = 16.2 × 102 = 1.62 × 103.Example: 1.08 × 1017 ÷ 1.2 × 1010 = 0.9 × 107 = 9 × 106.A variation on sienti� notation is engineering notation. In engineering nota-tion the exponent is a multiple of three, re�eting the fat that the standard multi-plier in the metri system is 103 = 1000. It is thus more ommon to speak of meters,kilometers, millimeters, nanometers, and femtometers than is to speak of deimetersand dekameters. Unfortunately, some units suh as entimeters and Angstroms areentrenhed whih ompliates our onversion to SI (see below).Numbers written in sienti� notation are assumed to be measurements, thusapproximations. Therefore, the rules outlined below must be applied.10.4 Signi�ant Figures, Rounding and TrunatingThe signi�ant �gures (digits) in a measurement inlude all the digits that an beknown preisely plus a last digit that is likely an estimate.The rules for determining whih digits in a measurement are signi�ant are:1. Every nonzero digit in a reorded measurement is signi�ant. 24.7m, 0.743mand 714m all have three signi�ant �gures.2. Zeroes appearing between nonzero digits are signi�ant. The measurements7003m, 40.79m, and 1.503m all have four signi�ant �gures.3. Zeroes in front of (before) all nonzero digits are merely plaeholders; they arenot signi�ant. 0.0000099 only has two signi�ant �gures.©MMIX Ke
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10.4. SIGNIFICANT FIGURES, ROUNDING AND TRUNCATING 814. Zeroes at the right end of the number if a deimal point is present andalso zeroes to the right of the deimal (unless leading) are signi�ant. Themeasurements 1241.20m, 210.100m, 0.00123456m, 5600.00m, and 123000000mall have six signi�ant digits.5. Zeroes at the end of a measurement and to the left of an omitted deimal pointare ambiguous. They are not signi�ant if they are only plae holders: 6,000,000live in New York�the zeroes are just to represent the magnitude of how manypeople are in N.Y. But the zeroes an be signi�ant if they are the result ofpreise measurements. A vinulum over the least signi�ant zero is often used.Examples: tell how many signi�ant �gures eah of the following has: 9027.0,9027, 9270, 9270., 0.9270, 9270, and 0.00927.Solution: 9027.0 has 5 signi�ant digits, 0.00927 has 3. 9270 also has 3 but thereis room for doubt. All the rest have 4.The signi�ant �gures in a number in sienti� notation is the number of digitsin the mantissa. The number 4 × 105 has only one digit in the mantissa, so it hasone signi�ant �gure. 9.344 × 105 has 4 signi�ant �gures. Thus the number 1200whih is unlear as to how many signi�ant �gures it has is more learly expressed as
1.200 × 103 as having 4 signi�ant �gures or as 1.2 × 103 as having 2.When alulating with signi�ant �gures, an answer annot be more preise thanthe least preise measurement.This means for...

• Addition and subtration: the answer an have no more digits to the right ofthe deimal point than are ontained in the measurement with the least numberof digits to the right of the deimal point.Example: 12.21m + 324.0m + 6.25m = 342.46m, but the answer must berounded to 342.5m, or 3.425 × 102 m. Spei�ation of units is also ex-tremely important.
• Multipliation and division: the answer must ontain no more signi�ant�gures than the measurement with the least number of signi�ant �gures (theposition of the deimal point is irrelevant).It is very important to round rather than trunate your results: π ≈ 3.1416 not

π ≈ 3.1415, You are often instruted to round to so many signi�ant digits or to suhand suh a level of preision. There are variations, but the standard rule would roundanything from $0.50 up to $1.49 all to $1. One variation would round $0.50 downand $1.50 up based on the evenness/oddness of destination digit. A ommon mistaketo be avoided is �double rounding,� for example, rounding 1.46 �rst to 1.5 and thento 2. More on that will be disuss in the Introdution to Statistis, lesson 3.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
iθ G. Calkins
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82 NUMBERS LESSON 10. SCIENTIFIC NOTATION, SIGN. FIGURES, ETC.10.5 Various Common UnitsThe National Institute of Standards and Tehnology, formerly the National Bu-reau of Standards, is our nation's o�ial soure of standard weights and measures,as well as other standards, suh as for programming languages. The metri system(Systéme International or SI) has a long, interesting history and is in use the worldover. A notable exeption is in ommon (non-sienti�) uses in the United States.SI di�erentiates between basi and derive units and hene is often alled the MKSsystem for meter (length), kilogram (mass), seond (time), the fundamental threeof the seven basi units. The other four basi units are: K (temperature), ampere(urrent), andela (illumination), and mole (amount of substane). Listed below is ahodge-podge of units and the most important onversions.1. English units of volume:3 teaspoons=1 tablespoon (useful for hild mediine dosage, not just ooking)8 tablespoons per stik of butter�4 stiks per pound (Historially, a pound wasut in quarters.)2 ups per pint, 2 pints per quart, 4 quarts per gallon, 16 � oz per pint (a pint'sa pound the world round�works only for water. That is, a �uid oune of waterweights about a oune.)231 u in per gallon (US liquid�there are also Brit and US dry gallons).There are 160 Brit oz per Brit Gal., 0.9607594 Brit �uid oz per US �uid oz.There are 1.16 US liquid gallons per US dry gallon. 8 US dry gallons per bushel,4 peks per bushel. 42 US gallons per US petro barrel (31.5 US gallons per USliquid barrel). 2 US liquid barrels per hogshead. A ord is 4'x4'x8'�be sure toget that and not a third of that (�rik�) when buying wood!Conrete is spei�ed in ubi yards (27 u ft per u yard�why?).There are many more �English� units of volume, with a rih history but mostare fortunately falling into disuse. I have never had to use: Grains, Sruple (20grains), Minim (20 sruples), Drahm/Dram (60 minims; 1/8 or 1/16 oz), Gill(5 Brit oz), Buket (4 Brit gallons), Firkins (9 Brit gallons), Bag (3 bushels),Seam (8 bushels), or Butt (2-4? barrels or 2 hogsheads). Sine fresh water onships was stored in a butt, and people ongregated and gossiped there, the termsuttlebutt now refers to gossip, not just the fountain!Note: 33.8 ml/� oz and 3.785 liters per gallon are useful rossovers.2. Common �English� units of weight inlude: aret (200 mg), oune (12 apothe-aries/troy or 16 avoirdupois per pound!), pound, and ton (2000 pounds pershort ton, 2240 pounds per long ton, 2204 pounds per metri ton). Mostlyfallen into disuse are: pennyweight (20 per troy oz), slug (32.174 avdp. pounds),©MMIX Ke
iθ G. Calkins Otober 4, 2009 Numbers and Their App.�pdf 4
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10.5. VARIOUS COMMON UNITS 83hundredweight (20 per ton). Pounds are, of ourse, abbreviated as lb!28.349523 grams per oune and 2.20 pounds per kilogram are useful rossovers.Also, a nikel weights exatly 5 grams and a post-1982 penny half that.3. Common units of time are: the pio-, nano-, miro-, milli-, seonds. There are60 seonds per minute (angle or time!), 60 minutes per hour (or degree), 24hours per day, 7 days per week, 14 days make a fortnight, 365.24 days per yearmore or less. There are sidereal, alendar, and tropial years as well as alendarand lunar months. We also speak of deades, enturies, millenia, age of theearth (4.5 billion years), or universe (about 13.7 billion years=a Hubble time).NIST is responsible for de�ning the seond, urrently via the esium fountainlok and ooperates internationally to generate world time known as Coordi-nated Universal Time (UCT). However, the US Navy is responsible for main-taining and distributing this time and uses several dozen esium loks andabout one dozen hydrogen masers to do this. They are researhing the use of aesium fountain lok to help stabilize and steer the hydrogen masers. The se-ond is metri. The 21st entury/3rd millennium started January 1, 2001. Also,the designations 12 am (tehnially noon, Chiago style midnight) and 12 pmshould not be used.4. You are responsible to know and understand the metri pre�xes of: Giga, Mega,Kilo, milli, miro, nano, and pio. You should be very aware that giga(G),mega(M), and kilo(K) an have slightly di�erent meanings espeially when usedin a omputer related ontext. There K refers not to 1000, but to 1024 = 210.M might refer to 1,000,000; 1,024,000 (3.5" �oppies!); or 1048576 = 220. Gmight refer to 1,000,000,000; 1, 073, 741, 824 = 230; or possibly some number inbetween! The terms Kibi(Ki), Mebi(Mi), Gibi(Gi) have been suggested.5. Common �English� units of length inlude the inh, foot (12 inhes per foot),yard (36 inhes per yard), mile (5280 feet per statute mile�a nautial mile isabout 6076 feet (Int) or 6080 feet (Brit)). My father still speaks in rods (16.5feet), whih is also a pole or perh. Physiists speak of lightyears (5.8785 ×
1012 miles or 9.46 × 1012 km). This is the distane light travels in one year.Light in vauum travels exatly 299,792,458 meters per seond (about
3×108 m/s). This value is c. When ombined with the de�nition of the seond,this de�nes the meter. Hands (4"), mil (.001"), and points (about 1/72") arestill ommonly used. Falling into disuse are furlongs (8 per mile), leagues (3Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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84 NUMBERS LESSON 10. SCIENTIFIC NOTATION, SIGN. FIGURES, ETC.naut. miles), fathom (6 feet), hains (80± per mile), and ables (720 feet).More metri rossovers: Exatly: 2.54 m/in= 39.37 inhes per meter.Approximately 1.609 km per mile or 0.62 miles per km.Feet are often abbreviated as single quotes and inhes as doublequotes. (I am 5'6".) These same quote symbols are used for angle measure-ment in minutes, seonds, and thirds. (A right angle is 90◦0′0′′0′′′.)10.6 Unit ConversionsConverting from one type of unit to another is a ommon ourane in siene.It is just another inidene of multiplying by our multipliative identity (1)! Forexample, to onvert 0.62 miles into feet we multiply by the identity 5280 feet/1 mile.The units of miles in the numerator and demominator anel and we are left with3273.6 feet. (More than 3 signi�ant �gures were retained, sine 5280 is an exatvalue.) Two additional and useful onversions are given below as further examples.Example: 60miles/hour × 5280 ft/mile × 1 hour/3600 s = 88 ft/s.Example: 5280 ft/mile× 5280 ft/mile /640 ares/sq mile=43560 sq ft/are. Thisis a square about 209 ft on a side or a retangle exatly 132′ × 330′. A square mile isa setion, 36 setions are a geographi township. Politial townships vary in size.
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10.7. SIGNIFICANT FIGURES HOMEWORK 8510.7 Signi�ant Figures HomeworkEah problem is worth two points, exept as noted.1. Using your TI-84 alulator result for 69! in sienti� notation, multiply 69! by7 and approximate 70! also in sienti� notation.For problems 2�7 round eah measurements to the number of signi�ant �guresshown in parentheses. Write your answer in sienti� notation.2. 314.721m (4 sig. �g.)3. 0.001775m (2 sig. �g.)4. 64.32 × 10−1 m (1 sig. �g.)5. 8792m (2 sig. �g.)6. 87.073m (3 sig. �g.)7. 4.3621 × 108 m (1 sig. �g.)For problems 8�17 do the following operations and give the answer to the or-ret number of signi�ant �gures.8. 74.626m − 28.34m9. 61.2m + 9.35m + 8.6m10. 9.44m − 2.11m11. 1.36m + 10.17m12. 34.61m − 17.3m13. 2.10m × 0.70m14. 2.4526 m÷ 8.4.15. 0.365 m ÷ 0.0200.
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86 NUMBERS LESSON 10. SCIENTIFIC NOTATION, SIGN. FIGURES, ETC.16. (1.8 × 10−3 m) × (2.9 × 10−2 m)17. 5.3 × 10−2 m ÷ 0.25518. (Four points:) The �ve students at table #2 obtained the following measure-ments for the length of 12-inh rulers in entimeters (four groups tried it 4times). Determine whether eah student's measurements were aurate and/orpreise.Meas. #\Student: Audrey/Rashmi Beky Cami Kara1. 31.51 30.4 30.281 28.12. 31.45 30.5 30.781 28.93. 31.61 30.3 30.441 28.74. 31.35 30.4 30.431 28.6Aurate: Yes or No Yes or No Yes or No Yes or NoPreise: Yes or No Yes or No Yes or No Yes or No19. (Three points:) Identify the exponent for the power of ten multiplier for eahof the following metri pre�xes. (Hint: they are in order and all the missingsones are multiples of three.) Pre�x ×10?Yotta- 24Zetta- 21Exa- 18Peta- 15Tera-Giga-Mega-Kilo-dei- −1enti- −2milli-miro-nano-pio-femto-atto- −18zepto- −2120. Bonus: Find a humorous unit/pre�x suh as 106 phones is one Megaphone!©MMIX Ke
iθ G. Calkins Otober 4, 2009 Numbers and Their App.�pdf 4

http://www.ehumorcentral.com/Directory/jokes/933.html


Numbers Lesson 11Beyond RationalityAll is number. PythagorasIn this lesson we will explore numbers whih annot be expressed as the ratio oftwo integers, i.e. irrational numbers. Our biography is on Pythagoras and then weexplore a proof often attributed to him that many radials are irrational. We studythe parts of a radial and how to simplify and multiply them. We disuss rationalizingdenominators and give the old method of extrating roots by hand. We lose with asetion on the Golden Ratio.11.1 The Father of Numbers: PythagorasPythagoras was an anient Greek (. 576�. 500 b.., both dates have large singledigit unertainties) mathematiian, philosopher, and mysti perhaps best known forhis theorem and shool. We will disuss the Pythagorean Theorem in the next lesson.Many mathematial results are attributed to Pythagoras but some of them were likelydeveloped by his students at his shool/brotherhood, a few even after he died. Atthis time it is very di�ult to separate the man from his legend.Pythagoras oined the word philosophy to signify a love of wis-dom. Pythagoras and his shool believed everything ould be de-sribed mathematially, hene predited and measured. Rhythmiyles were often involved, espeially in desribing the osmos,another word he likely reated. Mathematis and religion thus be-ame omingled. Thought beame superior to observation, a notionstill present in many religions with an antisiene bias.Pythagoras was born on an island o� Greee settled by Greeks. His seret reli-gious shool was ommunal (at least for those in the inner irle) and lasted severalgenerations after his death, thus in�uening Aristotle, Sorates, and Plato. Serey87



88 NUMBERS LESSON 11. BEYOND RATIONALITYwas not always well observed. The shool was loated in southern Italy. Both maleand female students were welome and treated equally at a time when women wereoften onsidered property. The pentagram (a regular pentagon with all diagonalsproduing a 5-pointed star) was their symbol. Any writings Pythagoras produed didnot survive, but his teahings may have all been stritly oral.In astronomy the known planets were said to produe a harmony of the spheres.Musial tones and sales were also studied. One story has his shool studying theblaksmith's anvils whih harmonized beause of their simple proportional sizes.Pythagoras believed in reinarnation and laimed to remember four previous lives.Many of his followers or disiples studied in Egypt where the transmigration of thesoul was a ommon belief. Pythagoras was also the �rst in�uential Western vege-tarian. Beans were also not to be eaten sine they ontained or transmitted souls,although it is possible abstaining from beans really meant abstaining from politis.Pythagoras's death may have been a murder and some tales indiated he stoppedrunning when he ame to a �eld of beans.11.2 Irrational NumbersIt was widely believed that all numbers were rational, expressible as the ratio oftwo integers, until the Pythagorean shool (around 500 b..) disovered otherwise.(Legend has it that someone shared this seret (�spilled the beans�) and was thrownoverboard the ship they were on at the time.) Today, suh numbers are alled ir-rational numbers. Sine then irrational has beome an adjetive meaning lakingnormal logial larity! The square root of 2 (√2) may have been the �rst irrationalnumber disovered. It is the solution to the simple problem x2 = 2.Irrational numbers are real numbers that annot be expressed as the ratio of twointegers.Common irrational numbers are nonrepeating and nonterminating deimals. Theseinlude the roots of any prime and indeed most radials.11.3 Simplifying RadialsThe symbol n

√ is alled a radial. The number underneath the surd symbol (�hek-mark�) is the radiand. n is the root index, indiating what the root is. Whenno root index appears, 2 meaning square root is assumed.Irrational numbers were originally onsidered absurd! Historially radials werewritten without a vinulum: √(2), for instane.©MMIX Ke
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11.4. PYTHAGORAS'S PROOF THAT THE √
2 IS IRRATIONAL 89

√
2 an also be written as 2

1

2 . In general, xa/b means the bth root of xa. Suhrational exponents still follow the exponentiation rules given in Numbers Lesson 5.11.4 Pythagoras's Proof that the √
2 is irrationalGiven below is a proof often attributed to Pythagoras of the existene of irrationalnumbers using the √

2 as an example. (Some have suggested that the golden ratiowas the �rst irrational number disovered.)Statements Reasons√
2 = a/b Proof by ontradition: assume truewhat we are proving false

2 = a2/b2 2b2 = a2 Square both sides (expressions remainequal)
a and b have no ommon fators assumed without loss of generality: a/brepresents redued frationIf a is odd, a2 is odd, but
2b2 is learly even, a ontradition odd times odd is odd, a annot be botheven and odd simultaneously.If a is even, let a = 2c even an be fatored into 2 and anothernumber even (2) times anything is even
a2 = a · a = 4c2 = 2b2 Substitution of equals into produt(twie)
2c2 = b2 Division Property of EqualitySo b is even; hene a, b have the om-mon fator 2, a ontradition. Q.E.D. (quod erat demonstrandum:Latin for whih was to be proved.)When simplifying radials, break the radiand into fators of perfet squares,ubes, et. (9 is the perfet square of 3, 4 is the perfet square of 2, 27 is the ube of3). Separate the fators into separate radials. Then express the roots of the radialswith perfet squares, ubes, . . ..Examples:

√
27 =

√
9 · 3 =

√
9 ·

√
3 = 3

√
3

√
96 =

√
16 · 6 =

√
16
√

6 = 4
√

6

3
√

250 =
3
√

125 · 2 =
3
√

125
3
√

2 = 5
3
√
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90 NUMBERS LESSON 11. BEYOND RATIONALITY11.5 Multiplying RadialsWhen multiplying radials, multiply the radiands of like root indexes and thensimplify the produt. Usually, the easiest way is to simplify as you go along so thatyou don't end up with large produts to fator.Examples:
√

6
√

3 =
√

6 · 3 =
√

18 =
√

9 · 2 = 3
√

2

(
√

7)2 =
√

7
√

7 = 7

(2
√

5)2 = 2
√

5 · 2
√

5 = 4 · 5 = 20Compare the next two examples and notie how they di�er. Both methods areorret. Choose the one whih saves you the most time.
√

50
√

15 =
√

750 =
√

25 · 30 = 5
√

30

√
50
√

15 = 5
√

2 ·
√

15 = 5
√

30Note when the radials have di�erent root indexes:
3
√

16
√

2 =
3
√

8 · 2
√

2 = 2
3
√

2 ·
√

211.6 Rationalizing DenominatorsCommon pratie is to simplify expressions to get rid of radials in the denomina-tor of frations. Historially, this was all but neessary before alulators. (Imaginedividing √2 by the √3 by long division!) In order to rationalize the demoninator, theommon pratie of multiplying by one is used. One omes in many forms: anythingdivided by itself is one. So multiply the fration by the square root that is in thedenominator over itself.Examples:
√

3

2
=

√
3√
2

=

√
3
√

2√
2
√

2
=

√
6

2
√

16

12
=

4

2
√

3
=

2√
3

=
2
√

3√
3
√

3
=

2
√

3

3
√

1

8
=

1

2
√

2
=

1
√

2

2
√

2
√

2
=

√
2
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11.7. EXTRACTING ROOTS 9111.7 Extrating RootsThe √
2 an be approximated on your alulator. Before alulators were devel-oped, the following method was widely taught and used. It is based on Newton'sMethod whih will be taught in alulus. Sine the deimal representation of √2 goeson forever without terminating or repeating, alulators an only give you a fairlypreise deimal approximation.Whenever you use the deimal approximation of a radial, you should note that itis an approximation and not exat by the use of the symbol ≈.1. Separate the number into groups of two digits going eah way from the deimalpoint.2. Estimate the largest square whih will go into the �rst group.3. This number goes both in the normal divisor's loation for long division andabove the �rst group as in long division.4. Double this digit and bring it down for the next step (see example below).5. Also bring down the next group of digits as in long division.6. Estimate how many times the two digit number formed using this doubled digitand the number of times...will go into the number.7. Repeat steps 4�6 above, but now the number down will be 2, 3, 4 digits, et.Continue until the desired auray is ahieved.Example: Extrating root 2.Step 1: ?. ? ? ? ? ? ?? / 2. 00 00 00 00 00 00Find an integer that squared goes into 2:Step 2: 11 / 2. 00 00 00 00 00 00Double the quotient and bring down to be the divisor. Another digit will follow.1. ?1 / 2. 00 00 00 00 00 0012? / 1 00Find the number,?, so that 2? will go into 100 ? times. (We �nd that it is 4:

24 · 4 < 100 < 25 · 5)Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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92 NUMBERS LESSON 11. BEYOND RATIONALITY1. 41 / 2. 00 00 00 00 00 00124 / 1 00
964We ontinue to repeat the steps: double the quotient and �nd the last digit untilwe get the preision we need.1. 4 11 / 2. 00 00 00 00 00 00124 / 1 00
96281 / 4 00
2 811 19How long would it take you to verify for auray the following level of preision?1

√
2 = 1.41421 35623 73095 04880 16887 24209 69807 85696 71875 37694 80731

76679 73799 07324 78462 10703 88503 87534 32764 15727 35013 84623 · · ·.11.8 Golden RatioAnother urious irrational number is Φ = 1+
√

5
2

≈ 1.618 · · · and his partner Φ′ =√
5−1
2

≈ 0.618 · · ·. These are known as the Golden Ratio and symbolized by Φ, theGreek letter apital phi. Notie how things like 3′′ × 5′′ ards often assume theseproportions. Notie also how ratios of onseutive Fibonnai numbers approah theGolden Ratio as seen in Numbers Homework 8.8. The Golden Ratio is also one of theroots of the quadrati equation x2 −x− 1 = 0. If you hange the 2's in the ontinuedfration given in Numbers Lesson 8 to 1's, you will have yet another representation!
Φ = 1.61803 39887 49894 84820 45868 34365 63811 77203 09180 · · ·

1WARNING: some students have naively programmed this on their alulator and not gottenthis result due to round o� error.©MMIX Ke
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11.9. RADICAL HOMEWORK 93Name Sore11.9 Radial HomeworkEah problem is worth one point.Examples: Simplifying Square Roots
√

75 =
√

25 · 3 =
√

25 ·
√

3 = 5
√

3√
76 =

√
4 · 19 =

√
4
√

19 = 2
√

19√
144 =

√
9 · 16 =

√
9
√

16 = 3 · 4 = 12
√

54 =
√

9 · 6 =
√

9
√

6 = 3
√

6 not 3
√

2
√

3Examples: Multiplying Square Roots
(
√

3)(
√

2) = (
√

6)

(
√

3)2 = (
√

3)(
√

3) = 3

(2
√

3)2 = (2
√

3)(2
√

3) = 4 · 3 = 12Examples: Rationalizing the Denominator
√

2
3

=
√

2√
3

=
√

2√
3
·
√

3√
3

=
√

6
3

√

3
8

=
√

3√
8

=
√

3√
8
·
√

2√
2

=
√

6√
16

=
√

6
4Express eah square root EXACTLY in simplest form (one point eah).1. √12 2. √18 3. √24 4. √32 5. √40

6. √48 7. √60 8. √75 9. √73 10. √95
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94 NUMBERS LESSON 11. BEYOND RATIONALITY11. √90 12. √216 13. √120 14. √235 15. √810

16. √324 17. √720 18. √242 19. √784 20. √828

Express eah produt EXACTLY in simplest form.21. (3
√

2)2 22. (4
√

3)2 23. (2
√

3)(
√

2) 24. (3
√

6)(2
√

3) 25. (7
√

3)2

Rationalize the denominator, then simplify EXACTLY.26. √

1
3

27. √

5
24

28. √

7
27

29. √

35
50

30. √

1
2
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Numbers Lesson 12Theorems: Pythagorean, Fermat'sLast, et.I have disovered a truly marvelous demonstrationwhih this margin is too narrow to ontain. Pierre de FermatThis lesson introdues two important theorems, the Pythagorean Theorem andFermat's Last Theorem (FLT). We repeated the quote above due to its importane.Considerable spae is given to an introdution to trigonometry before the PythagoreanTheorem is applied to the pratial appliation of �nding distanes. Diophantineanalysis is introdued to help disuss FLT. Perfet uboids, the Fermat-Catalan Con-jeture, and Goldbah Conjeture are also overed.12.1 The Father of Modern Mathematis: FibonaiThe Italian Fibonai or Leonardo of Pisa (. 1170�. 1250) was the �most talentedmathematiian of the Middle Ages.� Fibonai is best known for spreading the use ofthe Hindu-Arabi plae value number system and also a sequene of natural numberspresented earlier. The name Fibonai may have been assigned posthumously or wasthe name Leonardo published under. In either ase it seems to be a referene to hisfather and some have suggested it to be self-depreiating in that his father's niknamemeant simple. Leonardo's father was a merhant and thus he visited Arab marketsin North Afria and as a young boy Leonardo learned the omputation methodsthere. Leonardo's publiation aused the eventual displaement of the use of Romannumerals thus ushering in modern arithmeti. The Fibonai sequene was not newwith Fibonai, but his publiation of it in onjuntion with the tallying of a rabbitpopulation popularized it. 95



96 NUMBERS LESSON 12. THEOREMS: PYTHAGOREAN, FERMAT'S, ETC.12.2 Pythagorean Theorem, Proof, TriplesOne of the most important disoveries in antiquity was that not only did 32+42 =

52, but also, if suh a triple ould be found, these were the side lengths of a righttriangle. (A right triangle ontains one 90◦ or right angle.) Several ultures (Chinese,Babylonians, Egyptians, and Greeks) may have independently made this disovery,but due to our histori European slant and reords preservation, this has been knownas the Pythagorean Theorem. However, the Greeks went further, developing geometrynot only for pratial purposes, but also in abstration and for its logial struture.The Pythagorean Theorem is one of the most important fats learned in Geometry.A triangle with sides a, b, and c (longest) is a right triangle if and only if a2+b2 = c2.Hene we know how the sides are related if it is a right triangle. We an alsoprove the triangle to be a right triangle if its sides have this relationship�the onversesituation.There are over three hundred di�erent proofs of the Pythagorean Theorem. Oneof the ommon proofs uses a square within a square (see �gure below). Eah side ofthe inner square has length c. Eah orner of the inner square intersets the sidesof the outer square. The four triangles formed by the intersetion are all ongruent.Therefore eah side of the outer square is made up of two segments, a and b.

a

a
b

b

c
c

a

a

b

b

c

c

60

30

45

1

2

1

1

o

o

o

?

?

In order to �nd the distane c in terms of a and b, we use the fat that the areaof the outer square is the same as the sum of the area of the four triangles and theinner square. The rest is algebrai manipulation. (a+ b)2 = c2 + 4(1
2
)ab. Expanding,we get: a2 + 2ab+ b2 = c2 + 2ab. After subtrating 2ab from both sides, we onlude©MMIX Ke
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12.3. SPECIAL TRIANGLES 97that c2 = a2 + b2. Q.E.D.1A pythagorean triple is a set of three integers a, b, c suh that a2 + b2 = c2.A primitive pythagorean triple is a pythagorean triple suh that GCF(a, b) = 1.Common pythagorean triple are: 3, 4, 5; 5, 12, 13; 7, 24, 25; 9, 40, 41;and 6, 8, 10. All but this last triple are primitive. The last is alled a multiple.Note: it follows that if GCF(a, b) = n, then n is also a fator of c. Notie how
32 = 4 + 5; 52 = 12 + 13, . . .. This is a harateristi of a general lass of primitivepythagorean triples involving squares and two onseutive integers and was illustratedin homework 3, problem 6. Pythagorean triples suh as 8, 15, 17 do not have thisharateristi.
12.3 Speial TrianglesA regular polygon has all sides equal (equilateral) and all angles equal (equian-gular). In a triangle these annot our independently. The resulting triangle withsides in the ratio 1:1:1 and angles of 60◦, 60◦, 60◦ is disussed, in part, below. Thethree most important right triangles are: the 3, 4, 5; the isoseles right (45◦, 45◦, 90◦);and the 30◦, 60◦, 90◦ triangle. The 3, 4, 5 triangle has angle measures of about 37◦,
53◦, 90◦. Wath espeially for these speial angles and triangles.The isoseles (2 or more sides equal) right (having a 90◦ angle) triangle an bethought of as having legs (the shorter sides of a right triangle) of length 1. Thusthe hypotenuse (the longest side of a right triangle) is √

12 + 12 =
√

2. Pleaselabel the upper �?� (blue ?) thusly in the �gure above. The 30◦, 60◦, 90◦ trianglean be thought of as a biseted2 equilateral triangle. Thus one side might be 1, thehypotenuse then is 2 and the other side must satisfy 12 + x2 = 22, or x2 = 3, thus
x =

√
3. Please label the lower �?� (red ?) thusly in the �gure above. These sidelength ratios must be memorized and will be seen often in trigonometry whih is thestudy of triangle measure, but primarily involves triangle side length ratios. Note: if

a2 +b2 < c2, the triangle is obtuse (ontains an angle more than 90◦). If a2 +b2 > c2,the triangle is aute (all three angles are less then 90◦).1We realize this proof depends on the onept of area and the area formula for triangles, itemsnot yet formally overed in this ourse. Motivation for them ould our bak when fators arepresented.2We will formally de�ne this term in Geometry, but its meaning should be lear here: to ut intotwo equal parts.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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98 NUMBERS LESSON 12. THEOREMS: PYTHAGOREAN, FERMAT'S, ETC.12.4 Trigonometry De�nitions
A quik introdution to a semester of trigonometry anbe summarized as follows. Three items taken two at atime an be done six di�erent ways (3P2 = 3!/(3−2)! =

6/1 = 6). One trigonometri de�nition involves ratios(two numbers) of the three sides of a right triangle.For sake of future referene, we will identify the tri-angle as △ABC with right angle C. This is a verystandard onvention. Side c is then the hypotenuseand is opposite ∠C, et. In relation to angle A, a isits opposite side and b is its adjaent side (adjaentmeans to lie nearby). See the �gure to the right.
A

BC

b

a

c

sin A=opposite/hypotenuse os A=adjaent/hypotenuse tan A=opposite/adjaentsin is the normal abbreviation for sine and in English is pronouned the samewith a long i sound (saying its name). It omes from the Latin word for urve whihame from a Sanskrit word meaning bowstring. os is the normal abbreviation forosine where the pre�x o- has the usual meaning of together or partner. tanis the normal abbreviation for tangent from Latin meaning to touh whih has amore general geometri meaning of the intersetion of two geometri �gures at a point.These relationships are often remembered via the mnenomi SOH CAH TOA. Onean readily see that tan A=sin A/os A. The remaining three trigonometri fun-tions: seant or se A=1/os A; oseant or s A=1/sin A; and otangent orot A=1/tan A are less frequently used and usually don't even appear on alula-tors. Remember, there is only one ofuntion in eah reiproal relationship. It isimportant to note that a rather onfusing notation is historially used for the inversetrigonometri funtions. sin−1 x refers not to the reiproal of sinA, but rather to theinverse funtion. That is sin−1 x is an angle whose sin is equal to x. However, sin2 xmeans (sin(x))2 and must be entered as suh on your alulator. The table belowfollows diretly from these speial triangles and trigonometri de�nitions.
tan 90◦ is ill-de�ned sine cos 90◦ = 0 (or the adjaent side is zero) and division byzero is not allowed. More will be presented on the trigonometri funtion de�nitionsafter Number Lessons 13 introdues the artesian oordinate system and NumberLesson 15 introdues transendental numbers.©MMIX Ke
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12.5. DISTANCE 99Angle (deg) Angle (Radians) Sine Cosine Tangent
0◦ 0 0 1 0
30◦ π

6
1/2 √

3/2
√

3/3

36◦52′11.63 . . .′′ 0.64350 . . . 3/5 4/5 3/4
45◦ π

4

√
2/2

√
2/2 1

53◦7′48.36 . . .′′ 0.92729 . . . 4/5 3/5 4/3
60◦ π

3

√
3/2 1/2 √

3

90◦ π
2

1 0 ill-de�ned12.5 DistaneThe most important appliations of the Pythagorean Theorem is for �nding thedistane between points in a plane. See Numbers Lesson 13 for the formal develop-ment of the artesian oordinate system. Consider the points (1, 2) and (4, 6). Sineour x and y axes are orthogonal (as in at right angles or mutually perpendiular),it should be lear that the distane between them is √4 − 12 + 6 − 22 =
√

32 + 42 =√
9 + 16 =

√
25, whih is 5. In general, the distane between two points (x1, y1) and

(x2, y2) is:
D =

√

(x2 − x1)2 + (y2 − y1)2Points 1 and 2 may be interhanged with no a�et sine the squaring operationfores the result positive. That is, distane is always positive, unless termed direteddistane, in whih ase it may be negative.12.6 Diophantine AnalysisIntegers were the �rst numbers to be disovered and studied. As a result, on-siderable e�orts went into �nding integer solutions to some problems. Diophantus ofAlexandria, a Greek, lived about 250 a.d., wrote a treatise introduing symbolismwhose indeterminate equations are solved with rational values. Consider the problemof �nding triangular numbers whih are also square. We already know the formulaefor both and an set them equal: n(n+1)/2 = x2 or n(n+1) = 2x2. 0, 1, 36, 1225, . . .are solutions when ({n, x} ∈ {(0, 0), (1, 1), (8, 6), (49, 35), ...}. Suh analysis an bequite di�ult and might involve expressing square roots as ontinued frations, et.and sparked the early interest of many mathematiians.12.7 Fermat's Last TheoremFermat onsidered extensions to the Pythagorean Theorem and wondered if thereexisted any natural numbers suh that xn +yn = zn for n > 2. This beame known asNumbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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100 NUMBERS LESSON 12. THEOREMS: PYTHAGOREAN, FERMAT'S, ETC.Fermat's Last Theorem and was solved in the negative only in reent years. Spei�-ally, Fermat onjetured this equation to be false. His notes are in the margin of hisopy of Diophantus' Arithmetia where he remarked about 1637: �I have disovered atruly marvelous demonstration whih this margin is too small to ontain.� This was,of ourse, written in Latin, sine that is what European sientists and mathemati-ians ommuniated in until Isaa Newton's book Optiks was published in 1704 inthe vernaular (language native to the region, as in English). Fermat learly provedhis theorem for n = 4. It is also lear that to prove it for all prime n is su�ient.Euler produed an inomplete proof for n = 3 in 1770 whih was ompleted by latermathematiians. Legendre proved it for n = 5 in 1823. Lamé proved it for n = 7in 1839. In 1850 Kummer proved it for all n's whih did not divide the numeratorsof the Bernoulli numbers.3 One early proof failed beause prime fatorization is notunique over the omplex numbers. Andrew Wiles in 1993 gave a three day series ofletures where he stunned the world on the last day by ompleting a proof of some-thing whih implied FLT (Fermat's Last Theorem). Although it required a littlepathing up over the ourse of the next year or so, it is now well aepted. However,at 300 pages and dependant on reent advanes in mathematis, it seems doubtfulFermat ever had a proof, but his margin ertainly was too small!12.8 Perfet CuboidConsider a three dimensional appliation of Pythagorean Theorem. In a box withdimensions 3× 4× 12, it is lear the longest (body) diagonal is 13 (52 + 122 = 169 =

132). There are 3 di�erent lengths of diagonals on the faes:√
32 + 42 = 5

√
32 + 122 =

√
153

√
42 + 122 =

√
160In a perfet uboid (box or retangular parallelopiped), all seven of these num-bers: three lengths, three fae diagonals, and one body diagonal would be integers.This seems like a another potential EXPO projet and two homework problems willgive two of the three types of lose enounters known. It is known that if a perfetuboid exists, one of its sides must be at least 100 billion. It is also known thatperfet parallelopipeds4 exist.12.9 Fermat-Catalan ConjetureThe Fermat-Catalan Conjeture is a generalization of Fermat's Last Theorem. Itasks if with x, y, and z as relatively prime integers, an the equation: xp + yq = zr,with 1

p
+ 1

q
+ 1

r
< 1 be satis�ed. p, q, and r are also integers. Here are the only knownsolutions:31, 1

2
, 1

6
, 1

30
, 1

42
, 5

66
, . . ..4This older spelling seems to be falling out of favor to parallelepipeds, at least by Google.©MMIX Ke
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12.10. GOLDBACH'S CONJECTURE 101
x y z p q r1 2 3 7 3 22 7 3 5 2 47 13 2 3 2 92 17 71 7 3 23 11 122 5 4 217 76271 210663928 7 3 21414 2213459 65 3 2 79262 15312283 113 3 2 743 96222 30042907 8 3 233 1549034 15613 8 2 3For the �rst row, 17 + 23 = 1 + 8 = 9 = 32 with 1/7 + 1/3 + 1/2 = 41/42 < 1.The seond row has 25 +72 = 32+49 = 81 = 34 with 1/5+1/2+1/4 = 19/20 < 1.Several students in 1997�98 attempted 25000 bonus points for �nding anothersolution and some ontinued their researh in 2000�01 as an EXPO projets or ollegeresearh.12.10 Goldbah's ConjetureChristian Goldbah lived in Russia 1690�1764. His mathematial work inludeswhat has beome known as Goldbah's Conjeture whih states: every even numbergreater than 2 an be expressed as the sum of 2 primes, not neessarily distint. Noounterexample has ever been found, but a omplete proof has eluded mathematiianssine 1742. However, during the summer of 2003 two groups, one Chinese, one Iranian,both laimed proof. I rejet the Chinese proof out of hand. They may have provedsomething similar, but not Goldbah's Conjeture. They assume one is prime�elsewise, it is elegant. You be the judge of the Iranian proof.Example: 100 = 3 + 97 = 11 + 89 = 17 + 83 = 29 + 71 = 41 + 59 = 47 + 53.
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102 NUMBERS LESSON 12. THEOREMS: PYTHAGOREAN, FERMAT'S, ETC.12.11 Distane HomeworkAll values should be given as exat, whih means in simpli�ed radial form.(Remember to rationalize the denominator, if neessary.) Deimal approximationsare optional, but also lend ompleteness, but must be learly identi�ed asapproximations. Eah problem is worth two points.1. Using the Pythagorean Theorem in its three dimensional form (a2+b2+c2 = d2),�nd exatly and simplify the three fae diagonals and the body diagonal of aparallelopiped (box/uboid) with a = 240, b = 44, c = 117.2. Using the Pythagorean Theorem in its three dimensional form (a2+b2+c2 = d2),�nd exatly and simplify the three fae diagonals and the body diagonal of aparallelopiped (box/uboid) with a = 104, b = 153, c = 672.3. Find the exat length of the hypotenuse of an isoseles right triangle if the legsare of length 5.4. Given the hypotenuse of an isoseles right triangle as 12, what are the exatlengths of the other two sides.5. Given a 30◦, 60◦, 90◦, triangle with the hypotenuse 14, �nd the exat lengthsof the other two sides.6. Given a 30◦, 60◦, 90◦, triangle with the side opposite the 60◦ angle being 12, �ndthe exat length of the other two sides.7. Find the exat distane between the points (−12, 6) and (4,−6).8. Find the exat distane between the two points (3, 5) and (1,−1).
©MMIX Ke
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12.11. DISTANCE HOMEWORK 1039. Driving to Dairy Queen from the MSC, you go a 1/4 mile to the left. The roadbends (90◦) to the right, and you proeed on for another mile to Main street.At Main Street, you take a left and ontinue for another 2 miles. Dairy Queenwill be on the left side of the road. If you happened to walk diretly from MSCto Dairy Queen, how many miles would you save by not driving?10. George lives 5 miles north and 2 miles east of the MSC, while Jenni lives 1 milewest and three miles south of the MSC. How far apart do they live? (Assumea �at earth!)11. A irle is the set of points equidistant from a given point. If (4, 2) is theenter with (6, 3) on the irle, prove that (2, 3) is also on the irle. Note:(x−h)2 +(y−k)2 = r2 gives the relationship for a irle entered at (h, k) withradius r.12. The distane from point A to (3, 2) is 15. Find point A. How many answersould you have?13. Verify rows 3 through 5 of the Fermat-Catalin Conjeture table.14. Verify that Goldbah's Conjeture is true for 58 and 74. How many di�erentsums satisfy Goldbah's Conjeture for 58? For 74? (An example is 78: 71 + 7= 11 + 67 = 17 + 61)15. Use your alulator (in degrees mode or use degree symbol) to verify sin 15◦ =√
6−

√
2

4
and cos 15◦ =

√
6+

√
2

4
, then arefully evaluate exatly (

√
6−

√
2

4
)2+(

√
6+

√
2

4
)2.16. Verify tan 15◦ = 2 −

√
3 =

√

6−
√

2

4
√

6+
√

2

4

.17. Read setion 8.6 in your geometry textbook and look at problems 8.6: 11�14,18�19, 27.
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104 NUMBERS LESSON 12. THEOREMS: PYTHAGOREAN, FERMAT'S, ETC.
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Numbers Lesson 13Cartesians, Polynomials, QuadratisRead Euler, read Euler, he is the master [teaher℄ of us all. LaPlaeThis lesson develops the artesian oordinate system, relations and funtions, thendisusses slope, equations of a line, quadratis, the quadrati formula, the disrimi-nant, ubis, and higher order polynomials.13.1 Analysis Inarnate: EulerWhen the four greatest mathematiians are listed, Euler's name is the one addedto the great three. Leonard Euler�pronouedOiler�(1707�1783) was a Swiss math-ematiian and physiist, although he spent most of his life in Germany and Russia.Sine he published more papers than any mathematiian of his time he has beenalled proli��proli� an also be applied to the fat that he fathered 13 hildren.Euler's father was a friend of the Bernoulli family and Euler's genius was soondisovered by them. His ourse of study shifted from theology to mathematis whenJohann Bernoulli intervened, telling Euler's father he would be a great mathematiian.Euler followed Johann's son Daniel to St. Petersburg after son Niolas died. Euler wasbarely 20 when he started working at the Imperial Russian Aademy of Sienes�he had just ompleted his Ph.D. The Aademy emphasized researh and had fewstudents and a good library. After 14 years Euler moved to Berlin. While there hewrote over 200 letters to a German priness explaining diverse areas of math andsiene. These were ompiled into a best-seller. Frederik the Great's mother haddi�ulty engaging Euler in onversation to whih he replied: �Madam, it is beauseI have just ome from a ountry where every person who speaks is hanged.�Euler lost sight in his right eye while in Russia and his sight in his left eye dete-riorated while he was in Germany, rendering him nearly blind. However, Euler hadphenominal mental alulation skills and a photographi memory whih allowed himto ompensate so his produtivity seemed barely a�eted. �Euler alulated without105



106 NUMBERS LESSON 13. CARTESIANS, POLYNOMIALS, QUADRATICSapparent e�ort, as men breathe.� Euler later returned to St. Petersburg where heworked the last 16 years of his life.Euler developed the �eld of graph theory whih we will disuss further in Geom-etry and revolutionized several other �elds, suh as number theory. He standardizedthe use of many mathematial symbols, terminology, and notation we now take forgranted, suh as π, e, i =
√
−1, Σ, f(x), et. His �nal words were: �I die� when hedied of a stroke, perhaps with a hild on his lap, whih is how he often worked.13.2 IntrodutionCoordinate geometry was developed by both Desartes and Fermat. Today we useartesian oordinates extensively whih are named after the former. The relationshipbetween two sets of numbers are often represented via a graph or an equation. Forexample: F = 9

5
C + 32 relates temperature in Celsius to temperature in Fahrenheit.One variable is designated the independent variable (C) and the value (F ) dependson it and is thus the dependent variable. Often, it is easy to reverse these roles:

C = 5
9
(F − 32). Suh relationships, if plotted on a oordinate system are lines andhene termed linear.13.3 Ordered Pairs, Quadrants, Relations, Funtions,
f(x), VLTMathematiians often speak of forming the artesian produt of several items.The artesian produt is a set operation, but results in a (potentially) bigger objetwhih is generally not a member of our universal set! One example would be therational numbers formed as ratios of integers. This one happens to be the same sizeas the integers.The artesian oordinate system is suh a artesian produt of two number lines,labelled x and y. Now instead of having points on a number line with a single numberto indiate its distane from the origin (zero), we have points on a plane with twonumbers to indiate position. The number lines divide the plane into four quad-rants labelled I, II, III, IV ounterlokwise with quadrant I having both positive xand positive y oordinates. Oasionally Arabi instead of Latin numbers are used,espeially when referring to a single quadrant. The axes are not in any quadrant.II IIII IVThese oordinates are alled ordered pairs and are separated by ommas andenlosed within parentheses. The �rst oordinate (absissa) is x and is plotted hori-©MMIX Ke
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13.4. SLOPE, LINE EQUATIONS 107zontally. The seond oordinate (ordinate) is y and is plotted vertially. Warning:the notation for an open interval is idential!Lattie points are points in the xy-plane with integer oordinates for both x and
y.A relation is a set of ordered pairs.A funtion is a relation for whih there is exatly one value of the dependentvariable for eah value of the independent variable.Instead of writing y = x+2, funtional notation is often used: f(x) = x+2. Thisdoes not mean to multiply f by x. It means f is the name of the funtion with x asthe independent variable. It gives the reipe for �nding f(x) = y given an x value.The set of values of the independent variable is the domain.The set of values of the dependent variable is the range.The Vertial Line Test an be used to determine if a relation is a funtion asfollows. Chek if any vertial line ever rosses the relation more than one. If it does,the relation has failed the vertial line test and is not a funtion.13.4 Slope, Line EquationsAbout half of alulus is onerned with �nding the slope of any funtion any-where. Slope is thus an important onept but should already be familiar.slope = m = rise/run = y2 − y1

x2 − x1
=

∆y

∆x
=
dy

dx
.Parallel lines have equal slopes.Perpendiular lines have slopes whih are negative reiproals.Note: modern books tend to use an inlusive de�nition of parallel whih allows aline to be parallel to itself. Others exlude this.This should be well studied in Algebra, so only a quik review is presented intoday's ativity. In summary, if y = mx+b, thenm is the slope and b is the y-interept(i.e., the value of y when x = 0). Often linear equations are written with integeroe�ients in either standard (Ax+By = C) or general (Ax+By−C = 0) form.Suh relationships must be onverted into slope-interept form (y = mx + b) foreasy use on the graphing alulator. In today's ativity −10x+y = −5 (10x−y = 5)and y = 5 are enountered. Suh systems of equations are either inonsistent(parallel lines, so have no points in ommon), dependent (oinident lines (sameNumbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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108 NUMBERS LESSON 13. CARTESIANS, POLYNOMIALS, QUADRATICS
5

5 x

y

5

5 x

y

5

5 x

y

Figure 13.1: Systems of equations an be inonsistent (left with y = x and y = x+2),dependent (middle with y = x and 2y = 2x), or independent (right with y = x and
y = −x+ 2).slope and y-interept), so all points are in ommon), or independent (slopes aredi�erent). See Figure 13.1. One other form of an equation for a line is alled thepoint-slope form and is as follows: y− y1 = m(x− x1). The slope, m, is as de�nedabove, x and y are our variables, and (x1, y1) is a point on the line.13.5 Speial SlopesIt is important to understand the di�erene between positive, negative, zero,and unde�ned slopes, and that is also overed in today's ativity. In summary, ifthe slope is positive, y inreases as x inreases, and the funtion runs �uphill� (goingleft to right). If the slope is negative, y dereases as x inreases and the funtionruns downhill. If the slope is zero, y does not hange, thus is onstant�a horizontalline. Vertial lines are problemati in that there is no hange in x. Thus our formulais unde�ned due to division by zero. Some will term this ondition in�nite slope,but be aware that we an't tell if it is positive or negative in�nity! Hene the ratheronfusing term no slope is also in ommon usage for this situation.13.6 PolynomialsPolynomials are algebrai expressions involving only the operations of addition,subtration, and multipliation (+,−,×) of variables. The oe�ients should berational or perhaps real.Polynomials involve no nonalgebrai operations (suh as absolute value) and nooperations under whih the set of real numbers is not losed, suh as ÷ or square©MMIX Ke
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13.7. QUADRATIC FUNCTIONS 109root.An expression is a olletion of variables and onstants onneted by operationsymbols (+,−,×,÷, et.) whih stands for a number.A term is a part of an expression whih is added or subtrated.Quadrati funtions are polynomials with degree two and will be explored below.The degree of a polynomial is the maximum number of variables whih are fatorsin any one term.Polynomials (poly- meansmany) are named based on how many terms they haveand by their degree.Monomials have one term.Binomials have two terms.Trinomials have three terms.Linear funtions are a speial lass of polynomials with degree one. A onstantfuntion has degree zero.If only one variable is present, suh as x, we have a polynomial in x. The oe�ientof the term with highest degree is alled the leading oe�ient. There may alsobe a onstant oe�ient whih has no x multiplier.
13.7 Quadrati FuntionsThe general equation for a quadrati funtion is y = ax2 + bx+ c, where a, b, and care onstants, and a 6= 0. (If a = 0, then the funtion is linear.)Learn theQuadrati Formula (its derivation is given below): x =

−b±
√
b2 − 4ac

2a
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110 NUMBERS LESSON 13. CARTESIANS, POLYNOMIALS, QUADRATICS
ax2 + bx+ c = 0 Given: the general quadrati equation
ax2 + bx = −c Move onstant to other side, by subtrat-ing c from both sides.
ax2

a
+ bx

a
= −c

a
Remove oe�ients from quadrati term(x2) by dividing everything by the oe�-ient.

x2 + bx/a + (b/2a)2 = −c/a + (b/2a)2 To have perfet square trinomial (that'swhy method is alled Completing theSquare), need to take half of �b�, squareit, and add that to both sides.
(x+ b/2a)(x+ b/2a) = −c/a + (b/2a)2 Fator left side sine it is now a perfetsquare.

(x+ b/2a)2 = −c/a + (b2/4a2) Rewrote in exponential form (x× x = x2).
(x+ b/2a)2 = −4ac

4a2 + b2

4a2 On the right side, rewrote frations to haveommon denominator, 4a2.
x+ b/2a = ±

√
−4ac+b2

2a
Took square root of both sides (As you doto one side, do to the other.) When addingfrations with a ommon denominator, addthe numerators.

x = −b±
√

b2−4ac
2a

Isolate the variable by subtrating b/2afrom both sides.
The shape of the graph of a quadrati equation is alled a parabola. On bothsides of the vertex (the maximum or minimum point on the graph), the graph of theequation either inreases or dereases. The vertex lies on the axis of symmetry.Thus the graph on one side of the line (axis) of symmetry is a re�etion of the graphon the other side. Several examples of parabolas are explored in today's ativity.Where the graph rosses the x-axis are points alled x-interepts where y = 0.The general equation then degenerates into ax2 + bx + c = 0. To solve for x, thequadrati formula method must be mastered. It involved frations and radials.Quadrati Relations will be explored in Algebra II, Prealulus, and Calulus BC.They will allow the full nature of oni setions to be explored.To obtain the solution to a quadrati equation, Completing the Square is some-times used. Using the ompleting-the-square method, as outlined above in the deriva-tion of the quadrati formula, on the general equation (ax2 + bx+ c = 0) will �nd thesolutions to any equation.©MMIX Ke
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13.8. DISCRIMINANT 11113.8 DisriminantIf ax2 + bx+ c = 0, then the quantity D = b2 − 4ac is alled the disriminant.Gauss's Fundamental Theorem of Algebra states that the number of solutionsto any equation annot exeed its degree. In fat, if we arefully ount repeated (seeAtivity 12) and omplex roots (see Numbers Lesson 16), we will �nd equality. So,a quadrati equation may have up to two solutions. To determine quikly how manyand what type of solutions a quadrati equation has, analyze the disriminant.Given: ax2 + bx+ c = 0, where a, b, and c are real numbers.If b2 − 4ac < 0 The equation has no real-number solutions. The solutions, in-volving non-real omplex numbers, will be disussed in NumbersLesson 16.If b2 − 4ac > 0 The equation has two di�erent real-number solutions. If D is aperfet [rational℄ square, the solutions are rational.If b2 − 4ac = 0 Then the equation has a repeated real-number solution with thevertex on the x-axis. If a and b are rational, then the solutionwill also be rational.An example is x2−6x+8 = 0 where a = 1, b = −6, and c = 8. So the disriminantbeomes (−6)2 − 4(1)(8) = 36 − 32 = 4. Sine 4 is a positive number, the equationwill yield two real-number solutions. These answers are (6 + 2)/2 and (6 − 2)/2,whih redue to 4 and 2. These are related to the original equations as follows:
x2 − 6x+ 8 = (x− 4)(x− 2) = 0.13.9 Solutions, Roots, Zeroes, and x-intereptsThe four terms solutions, roots, zeroes, and x-interepts are often used some-what interhangeably to refer to the values of x where an equation is zero.13.10 Cubi, Quarti, QuintiPolynomials with degree three are referred to as ubi funtions. Degree fourpolynomials are quarti funtions and degree �ve polynomials are quinti fun-tions.There are ways to solve ubi funtions and quarti funtions, but the generalquinti funtion ax5 +bx4 +cx3 +dx2 +ex+f = 0 is not solveable algebraially�onlynumerial approximation an be obtained. Polynomials in x with only even or oddexponents are termed even or odd. This terminology is arried over to other graphswhih have similar symmetry when graphed. See Figures 13.2 and 13.3.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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112 NUMBERS LESSON 13. CARTESIANS, POLYNOMIALS, QUADRATICS
5

5 x

y
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Figure 13.2: Odd Funtions: y = x (left), y = x3 (middle), and y = sin x (right),where f(−x) = −f(x).
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Figure 13.3: Even Funtions: y = x2 (left), y = −(x2 − 9)(x2 + 1) (middle), and
y = cosx (right), where f(−x) = f(x).For example, the sine funtion is termed odd beause sin(−x) = − sin x, whereasthe osine funtion is termed even beause cos(−x) = cosx, similar to what hap-pens with polynomials with only even or odd degree terms. The even funtions aresymmetri about the y-axis, but the odd funtions are symmetri about the origin.
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13.11. FUNCTIONS HOMEWORK 11313.11 Funtions HomeworkEah problem is worth two points.1. Aunt Ethel hands you $15 in quarters (q) and dimes (d). Name �ve orderedpairs (q, d) representing the hange she might have given you. Graph thepoints. What relation do you observe?2. What are the slopes of the line ontaining points (0, 2) and (9, 5) and the linewith points (−1, 4) and (5, 8)? Whih line is steeper?3. Prove that �If two lines are parallel to the same line, then they are parallel toeah other.�4. If the slope of a line is −3
4
, what is the slope of a perpendiular line to it?For problems 5�8, lassify the following lines as vertial, horizontal, or oblique(neither):5. x+ y = 2.6. 2x = 6.7. 3x− 2y = 1.8. y = 17 − 5.9. Graph: y = 3x+ 2.10. Graph: x+ 4y = 4.

Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
iθ G. Calkins



114 NUMBERS LESSON 13. CARTESIANS, POLYNOMIALS, QUADRATICS11. Determine if the following system of equations is inonsistent, independent, ordependent:
2x− 3y = 5

10x− 15y = 25.12. Determine if the following system of equations is inonsistent, independent, ordependent:
6x+ 4y = 3

x− 1.5y = 4.13. Find a line perpendiular to the given line: 4x− y = 3.14. Graph the equation y = x2 − 3. Is it a relation or a funtion?15. Graph the equation x2 + y2 = 4. Is it a relation or a funtion? (If doing byalulator, solve for y. Enter into alulator both branhes for y due to ± thesquare root.)16. Graph the funtion y = x2 + 5x+ 6. Find the domain and range.17. Graph the funtion y = x2 − 4x+ 4. Find the domain and range.18. Solve the equation for x exatly: 5x2 + 8x− 6 = 3.19. Determine if the equation has real solutions. 4x2 − 13x+ 11 = 0.20. Solve the equation, y = x2 − 4x+ 5 exatly, when y = 0. What does this inferabout the graph of the funtion?21. Read setions 3.6 and 3.8 in your geometry textbook and do problem 10 in both.©MMIX Ke
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Numbers Lesson 14It's Been RealWir müssen wissen, wir werden wissen.1 David HilbertIn this lesson we will extend our understanding of numbers beyond the rationalto the reals�i.e. all the numbers on the real number line. We will state various fatsabout the irrationals and reals, disuss ontinuity and denseness, prove the reals tobe nondenumerable, present the �eld axioms used with the real numbers, inludingthe Peano Axioms of Arithmeti, and Trihotomy. We disuss orders of in�nity andsome of Gödel's work. We present the axioms of set theory, and lose with a setionon paradoxes. Some of this makes for heavy reading and is here more for referenethan mastry at this time.14.1 Father of [in℄ompleteness: Kurt GödelKurt Gödel (1906�1978) is one of the two most important logiians, the otherbeing Alfred Tarski (1902�1983). Kurt Gödel is generally onsidered an Austrian-Amerian mathematiian although he was born in an area whih is now in the CzehRepubli. He beame Czeh upon the politial organization at the end of World WarI, and beame a German itizen when Germany took over Austrian (Anshluss) in1938. Gödel and his wife left Vienna in 1940 and travelled via the trans-Siberianrailway, Japan, and California to the Institute of Advaned Studies in Prineton, NJ.He had visited Einstein and others there several years earlier and even spent a yearat Notre Dame.By 1931 Gödel unveiled Gödel's inompleteness theorem for whih he is bestknown. It proved that for any omputable axiomati system strong enough to desribearithmeti on the natural numbers: 1) if it was onsistent, then it was inomplete; 2)the onsisteny of the axioms ould not be proved within the system. This ended a1We must know, we shall know. 115



116 NUMBERS LESSON 14. IT'S BEEN REALhalf entury of attempts epitomized by Hilbert, Whitehead and Russell, of �nding aset of axioms su�ient for all mathematis.Before oming permanently to the US, Gödel was able to show that the Axiom ofChoie (AC) and the Generalized Continuum Hypothesis (GCH) were true in a settheory model (using the Zermelo-Frankel axioms or ZF) known as the onstrutibleuniverse and thus onsistent with the standard axioms of set theory. During the1960's Paul Cohen developed a model in whih they were false thus showing theirindependene. More on these below14.2 RealsThere are numbers on the number line whih are not rational.We already showed that the √
2 was irrational. We also stated that the rationalswere dense�between eah rational number was another rational number. However,apparently they are not ontinuous or omplete. Somehow if we only had rationalnumbers on our number line, we would skip over the √

2 even though any deimalapproximation, suh as 1.414, 1.4142, · · ·, is on our number line!The Real Numbers are all the numbers on the number line.Physiists like to say that they work with ontinuous funtions with ontinuousderivatives (slopes), whereas mathematiians spend a lot of time worrying aboutwhether or not a funtion or its derivatives are ontinuous. You will explore thisonept further in Algebra II and Calulus. Su�e it to say now that if you an plotthe funtion without piking up your penil, it is ontinuous. A number line is suha plot.Real Numbers are either rational or irrational.All rational and all irrational numbers are real numbers.The rational and irrational numbers are disjoints sets whih together make up thereal numbers.The symbol ℜ, R, or R denotes the set of real numbers.
N ⊂ Z ⊂ Q ⊂ R or N ⊂ Z ⊂ Q ⊂ RJohn Derbyshire in Prime Obsession, page 170, o�ers the mnemoni: Nine ZuluQueens Rule China to help remember how these nested Russian dolls are arranged.The real numbers are nondenumerable (unountable).Proof by ontradition:Assume that the real numbers are denumerable (meaning, they have one-to-one or-respondene to natural numbers). Then there exists a pairing of eah number suh©MMIX Ke
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14.3. THE FIELD AXIOMS 117that neither set has any elements left over. The following notation indiates onesuh pairing where the a's, b's, c's, et. represent digits and the subsripts indiatethe loation to the right of the deimal point: 1 ↔ 0.a1a2a3 · · ·, 2 ↔ 0.b1b2b3 · · ·,
3 ↔ 0.c1c2c3 · · ·, et. But we will now show that there is at least one real numberwhih is not inluded in this pairing. Let N = 0.n1n2n3 · · ·, where the n's representany digits suh that: n1 is not equal to a1, n2 is not equal to b2, n3 is not equal to c3,et. Thus N is a real number and is di�erent from eah of the real numbers in theone-to-one orrespondene. Thus the set of real numbers is non-denumerable. Thisproof goes bak to Georg Cantor in 1874.14.3 The Field AxiomsWe introdued the group axioms in Number Lesson 8. Another interesting math-ematial objet is a ring. They have two operators usually alled addition (+) andmultipliation (× or • or just juxtapositioned (from Latin: to be plaed side byside)). Sine × and x an so easily be onfused, • is often preferred. A ring is anabelian group under addition, where abelian means it is ommutative (see the ax-iom below), and omes from a famous Norwegian mathematiian named Niels HenrikAbel (1802�1829). (Abel is generally pronouned with a long e sound and aentedseond syllable.) A ring must also be losed under multipliation, and must also beassoiative (for an assoiative ring). There is also an axiom to interrelate additionand multipliation (see the distributive property below). The rings of interest to ushave a unit element whih will serve as our multipliative identity (1), and areommutative under multipliation. A �eld is just another mathematial objet withmore struture than a ring.If the elements di�erent from 0 in a ommutative ring with unit element form anabelean group under multipliation, the ring is alled a �eld.Zero must be exluded beause it does not have a multipliitive inverse�divisionby zero is not allowed. The only �elds we will be onerned with are the binaries(0,1), the rational numbers, the real numbers, and in Numbers Lesson 16, the omplexnumbers.The eleven �eld axioms are listed below and are true for any real numbers, repre-sented below by x, y, and z.Closure under addition: real numbers are losed under addition.That is, adding any pair of real numbers will result in a unique real number.
1 + 1 = 2. Always. This also means we stay inside the set.Closure under multipliation: real numbers are losed under multipliation.Multiplying any real number pair together will result in a unique real number.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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118 NUMBERS LESSON 14. IT'S BEEN REAL
2 × 2 = 4 and never 5.Additive Commutativity: x+ y = y + x.Order does not matter. You an add a olumn of numbers from the top or fromthe bottom.Multipliative Commutativity: x • y = y • x.The root word ommute is ommonly used to desribe exhanging plaes, likegoing forth and bak between home and work.Additive Assoiativity: (x+ y) + z = x+ (y + z).Multipliative Assoiativity: (xy)z = x(yz).Distributivity: Multipliation distributes over addition. x(y + z) = xy + xz.Additive Identity Element: The additive identity is a unique element, whihan be added to any element without altering it. The additive identity is zero (0).
x+ 0 = x.We have both a left and right additive identity element and they are the same:
x+ 0 = x = 0 + x.Multipliative Identity Element: The multipliative identity is unique; it is one(1). x • 1 = x.We also have both a left and right multipliative identity element and they arethe same: x • 1 = x = 1 • x.Additive Inverses: For every real number there exists a unique inverse, suh thatwhen added together, the result is the additive identity (0). The additive inverse isthe opposite (negative) of the given real number, x+ (−x) = 0.Multipliative Inverses: For every real number not equal to zero there exists aunique inverse, suh that when multiplied together, the result is the multipliativeidentity. x • x−1 = 1.

x−1 is a general designation for an inverse, but here denotes the multipliativeinverse or reiproal (1/x).©MMIX Ke
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14.4. REFLEXIVE, SYMMETRIC, TRANSITIVE, CLOSURE, TRICHOTOMY11914.4 Re�exive, Symmetri, Transitive, Closure, Tri-hotomyThe three axioms of Re�exive, Symmetri, and Transitive, an be used to de�neequality. In fat, these three are often added to the �ve Peano axioms given in Lesson2 to form Peano Arithmeti. In this situation they are applied to the naturalnumbers only. One additional axiom is needed, that of losure for equality, whih isgiven below.In addition to the �eld axioms, real numbers satisfy additional important axiomsor properties.Re�exive Property: If x is a real number, then x = x.Operations whih are re�exive look the same in a mirror. This axiom establishesthat a variable stands for the same number wherever it appears in an expression.Order is not re�exive: 5 < 5 is a ounterexample.Symmetry: If x = y, then y = x.Notie that symmetry is true for only the equal (�=�) sign. Order relationships,suh as < and >, annot have the numbers rearranged without hanging the meaning.For example, 4 < 5 is not the same as 5 < 4.If x = y and y = z, then x = z.Transitivity: If x < y and y < z, then x < z.If x > y and y > z, then x > z.The pre�x trans- means aross like rapid transit quikly takes you aross a ity.An easy way to remember whih of these three properties is whih is to note that theinitial letters RST are in alphabeti order and orresponds to 123 or the number ofvariables whih appear in the desription!Closure: For all a and b, if a is a natural number and a = b, then b is also a naturalnumber.That is, the natural numbers are losed under equality. We stated it for naturalnumbers to omplete the list of nine Peano axioms, but it an also be aepted forreal numbers.Trihotomy: If x and y are two real numbers, then exatly one of the followingmust be true: y < x, y > x, or y = x.Trihotomy means to setion or ut into three piees. Please note it is threepiees not two beause the reals are ontinuous (not just dense). You will hit anumber wherever you ut the real number line.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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120 NUMBERS LESSON 14. IT'S BEEN REAL14.5 Higher Orders of In�nity, ℵnGeorge Cantor introdued trans�nite numbers bak in the 1870's as a way to dealwith the fat that not all in�nite sets are equivalent. The ardinality of the integers,rational numbers, even algebrai numbers is designated the �rst order of in�nity andassigned the name aleph null (ℵ0) where aleph (ℵ) is the �rst Hebrew letter. However,the ardinality of the real numbers or suh important subsets as the transendentalsor irrationals is beyond that of a ountable in�nity. This ardinality beame known asthe ardinality of the ontinuum and was designated by . By forming power sets (theset of all subsets of a given set), Cantor was able to form higher order in�nities. Thesebeame known as ℵ0,ℵ1,ℵ2, · · ·, where 2ℵ0 = ℵ1 Cantor believed this �rst aleph (ℵ1)was the ardinality of the ontinuum and was sometimes able and sometimes not ableto prove it. This may well have been a ontributing fator to his mental instabilities.This hypothesis (2ℵ0 = ℵ1) beame known as the Continuum Hypothesis (CH).2This power set relationship was later generalized to apply to any suessive pair ofalephs and beame known as the generalized ontinuum hypothesis. Only muh laterwas it shown that CH is independent of the usual axioms of set theory and was thusunproveable (Kurt Gödel, 1937 and Paul Cohen, 1963). The method used by Cohenbeame known as foring.While we are on the topi, another axiom, the axiom of hoie (AC) su�ered asimilar fate, being proved independent of the rest of mathematis (Gödel, 1940 andCohen, 1963). However, unlike CH, it is still routinely, but not universally, used inthe development of mathematis.3 One last related topi is Gödel's InompletenessTheorem, 1931, whih showed that there were things within any formal systemwhih were neither provable nor not provable. These reent developments make onequestion the very merits of establishing a rigorous foundation for mathematis!14.6 The Axioms of Set TheoryFollowing are the axioms of set theory generally used in mathematis. They weredesigned by Ernst Zermelo, et al at the beginning of the 20th entury. This minimalset of assumptions leads to a onsistent body of mathematial knowledge, inludingthe natural, real, and omplex numbers along with their properties and arithmeti.Along with other axioms, the areas of geometry, algebra, topology, et. an also beformed. Georg Cantor developed set theory but impliitly assumed many of these.
• Existene: There exists at least one set. (The empty set an be hosen. Theset ontaining the empty set would then be onstruted · · ·.)2http://www.ii.om/math/h/3http://www.s.unb.a/~alopez-o/math-faq/mathtext/node35.html©MMIX Ke

iθ G. Calkins Otober 4, 2009 Numbers and Their App.�pdf 4

http://www.apronus.com/provenmath/index.htm
http://www.ii.com/math/ch/
http://www.ii.com/math/ch/
http://www.cs.unb.ca/~alopez-o/math-faq/mathtext/node35.html
http://www.cs.unb.ca/~alopez-o/math-faq/mathtext/node35.html


14.7. SURREAL NUMBERS 121
• Extension: Two sets are equal i� they have the same elements.
• Spei�ation: To every set A and every ondition S(x) there orresponds aset B whose elements are exatly those elements x of A for whih S(x) holds.This axiom leads to Russell's paradox.
• Pairing: For any two sets there exists a set to whih they both belong.
• Unions: For every olletion of sets there exists a set that ontains all theelements that belong to at least one of the sets in the olletion.
• Powers: For eah set there exists a olletion of sets that ontains among itselements all the subsets of the given set.
• In�nity: There exists a set ontaining 0 and ontaining the suessor of eahof its elements.
• Choie: For every set A there is a hoie funtion, f , suh that for any non-empty subset B of A, f(B) is a member of B.14.7 Surreal NumbersJohn Conway invented surreal numbers in reent years. These numbers have mul-tiple in�nities and many other unusual but useful properties. Donald Knuth wrote anovellete to help explain these numbers even before the tehnial paper was published.14.8 ContinuityOur marosopi existene means that most of our physial observations are on-tinuous. Thus most physial phenomina is modelled by ontinuous funtions withontinuous derivatives (slopes). Some utting edge models attempting to unify grav-ity with quantum mehanis while retaining general relativity (as in loop quantumgravity, unlike string or M-theory) treat spae as quantized. However, the mathemat-ial treatment of funtions is riddled with onerns about ontinuity. Disontinuitiesfall into two atagories: removable and nonremovable. We stated before that on-tinuous funtions an be drawn without having to lift your penil from the paper. Forremovable disontinuities one must only avoid an oasional point whereas nonremov-able disontinuities involve moving your penil up or down. The funtion x/x wouldhave a removeable disontinuity at x = 0, whereas |x|/x would have a nonremoveabledisontinuity. The de�nition of ontinuity is wrapped up with the onept of limitand will not be disussed further here.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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122 NUMBERS LESSON 14. IT'S BEEN REAL14.9 ParadoxesWe already enountered various paradoxes in Numbers Lesson 1 (Barber, Rus-sell's) and Lesson 6 (Liar's). Several paradoxes dating bak to the anients arepresented below. Zeno's name is often assoiated with these and other equivalentones whih show that motion is only an illusion. Even in anient times these wereonsidered absurb, but it took a modern understanding of in�nity, in�ntesimals, andonvergent in�nite series to dispel most (not all!) doubt.14.9.1 Paradox: DihotomyYou annot even start.�That whih is in loomotion must arrive at the half-way stage before it arrivesat the goal.��Aristotle.14.9.2 Paradox: Arhilles and the TortoiseYou an never ath up.Aristotle rendered this paradox as follows: �In a rae, the quikest runner annever overtake the slowest, sine the pursuer must �rst reah the point whene thepursued started, so that the slower must always hold a lead.�14.9.3 Paradox: ArrowYou annot even move.�If everything when it oupies an equal spae is at rest, and if that whih isin loomotion is always oupying suh a spae at any moment, the �ying arrow istherefore motionless.�This paradox, instead of dividing up spae like the prior two, divides time.
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14.10. REAL HOMEWORK 12314.10 Real HomeworkEah problem is worth two points.1. Name the axiom used: 10 + 13 + 17 + 23 = 10 + 17 + 13 + 23.2. Name the axiom used: 14 • ((17 + 52) + 30) = 14 • (17 + (52 + 30)).3. Name the axiom used: 7 × 11 × 13 = 11 × 7 × 13.4. Name the axiom used: √

(7 × 11) × 13 =
√

7 × (11 × 13).5. Name the axiomS used: x+ 0 = x always.6. Show by ounterexample that subtration is not ommutative.7. Show by ounterexample that subtration is not assoiative.8. Show by ounterexample that negative numbers are not losed under multipli-ation.9. Show by ounterexample that there is no Symmetri Property of greater than(�>�).10. Show by ounterexample that not equal (� 6=�) is not transitive.
Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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124 NUMBERS LESSON 14. IT'S BEEN REAL11. Is the relationship of �Alexis is a sister of Tom� symmetri? Show by examplewhy or why not.For problems 12�15, whih �eld axioms do the following sets of numbers fail?An example is irrational numbers failing for losure under multipliation sine√
2
√

2 = 2, whih is rational.12. Natural numbers (N ).13. The integers (Z).14. The rational numbers (Q).15. The binary digits {0,1} with and as the multipliation type operator (×) andeor (or modulo 2 addition) as the addition type operator (+), the only di�ereneis �1+1=0�).16. Consider again the set {0,1} with and and or as operations. Does and dis-tribute over or as well as vie versa? Fill in the table to prove or disprove thesedistribution rules.
p q r p • (q ∨ r) (p • q) ∨ (p • r) p ∨ (q • r) (p ∨ q) • (p ∨ r)0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 117. Read setion 3.4 in your geometry textbook. Do problems 3.4: 4 and 16.
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Numbers Lesson 15Transendental MeditationsWho of us would not be glad to lift the veil behind whih the future lieshidden; to ast a glane at the next advanes of our siene and at theserets of its developments during future enturies? David HilbertIn this lesson we will disuss numbers whih are not solutions to polynomial typeequations and are thus termed nonalgebrai or transendental. After introduing theDedekind ut as a way to de�ne real numbers, we disuss nonalgebrai numbers suhas π and e. Next we disuss the related problem of geometri onstrutions whihthe anients found impossible and whih have sine been proven impossible. We endthe lesson by noting how many more nonalgebrai numbers there are than algebrainumbers.15.1 The Father of Logarithms: John NapierJohn Napier (1550�1617) was born, lived, and died in Sotland. He is remem-bered as both a mathematiian and physiist and is best remembered for inventinglogarithms and Napier's bones. Logarithms made hand-alulations involving mul-tipliation and division muh easier and quiker by turning them into addition andsubtration. This paved the way for many sienti� advanes, suh as the alulationof Mars' orbit by Kepler.Napier was also trained in theology but enouraged people to think he dabbled inblak arts. Many stories have been preserved about his exploits. We will relate twohere.Napier and his servants disovered the neighbor's pigeons were helping themselvesto his grain. Napier warned his neighbor he would keep any pigeons found on hisproperty. The next day Napier was observed sooping up pigeons into saks�he hadspiked peas with brandy whih they had eaten, eaten enough to be unable to �y!Napier suspeted one of his servants was stealing from him. He took a blakrooster, oated it with haroal, and put it in a dark room. All the servants were125



126 NUMBERS LESSON 15. TRANSCENDENTAL MEDITATIONSinstruted to enter the room and pet the rooster. The guilty party was soon identi�edas the one with lean hands�every one else had done as instruted!Napier was the Lord for his manor and thus had a very pratial interest in suhthings as fertilizer and the water level in oal mines. Napier's favorite book was hisbook on the book of Revelation.Henry Briggs (1561�1631) was so impressed with Napiers invention of logarithmsthat he resolved to meet their inventor in person: �where almost one quarter of anhour was spent, eah beholding other with admiration, before one word was spoke.At last Briggs said: 'My lord, I have undertaken this long journey purposely to seeyour person, and to know by what engine of wit or ingenuity you ame �rst to thinkof this most exellent help in astronomy, viz. the logarithms; but, my lord, beingby you found out, I wonder nobody found it out before, when now known it is soeasy.'� (viz. is an abbreviation for videliet, Latin for namely.) Briggs proposed twomodi�ations whih resulted in our base 10 or ommon logarithms. Briggs publishedtables aurate to 14 deimal plaes for all integers 1 to 20,000 and from 90,000 to100,000 in 1624 in Arithmetia logarithmia with the gap �lled in by someone else by1628. This work remained the basis for all subsequent log tables up until 1924 whena 20 deimal plae table was begun to elebrate 300 years of logarithms. About 1620,the slide rule was also invented whih is laid out on a logarithmi sale and thus byadding and subtrating distanes, multipliation and division are performed.
15.2 Reals De�ned Via Dedekind CutTransendental numbers have a long history, dating bak to the anient Greeks,even though they were not named or truly reognized until muh later. As mentionedearlier, the anient Pythagorean shool disovered the existene of irrational numbers,with √

2 being the prototypial example as the diagonal of a unit square. Theythen regarded it as a numberless magnitude�distint from an arithmeti number�a onept whih remained an essential element of Greek mathematis. Soon otherirrational numbers were found: the square root of every prime number, then the squareroot of most omposite numbers. Irrational numbers, or inommensurables werewell studied by the time Eulid wrote his Elements. However, it was not until 1872when Rihard Dedekind (1831�1916) published his Continuity and Irrational Numbersthat a satisfatory theory developing suh numbers was given, one devoid of geometrionsiderations. His Dedekind Cut was an essential part of that development andgoes beyond what we an over here. An alternative approah using a Least UpperBound Axiom is also beyond our sope.©MMIX Ke
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15.3. THE STORY OF π 12715.3 The Story of πThe onept of π was invented to simplify alulations involving irles. TheRhind Papyrus, an Egyptian text from 1650 b.. ontains a statement relating asequals, the areas of a irle and a square whose side is 8/9 the irle's diameter. Thisvalue for π of 256/81 ≈ 3.16049 · · · is a muh better value than the one reordedabout 700 years later and given biblially in I Kings 7:23. �And he made a moltensea, ten ubits from one brim to the other...and a line of thirty ubits did ompass itround about.� These both reognize the need to relate the diameter or radius of airle to its area or irumferene. Euler was the one to attahed the symbol π tothe onept.
π is in fat de�ned as the ratio of a irle's irumferene (C) to its diameter (d):
π = C/d.This gives the formulae: C = πd = 2πr, where r is the radius.The area formula is similar: A = πr2.Arhimedes �rst proposed a method of obtaining the value of π to any desiredauray by alulating the perimeter of insribed and irumsribed polygons.By inreasing (usually by doubling) the number of sides, the auray is inreased�the true value of π is squeezed between these two values. Using his rude numerialrepresentation, Arhimedes was able, by using polygons of 96 sides (biseting the sidesof a hexagon 4 times), to determine: 310

71
< π < 310

70
or 3.140845 · · · < π < 3.142857 · · ·or π ≈ 3.1418. Over the enturies this value was highly re�ned until hundreds ofdeimal plaes were known before the invention of omputers and now trillions ofdigits are known. An interesting hallenge has been memorizing these random digitsand the urrent reord is about 83,000 digits, requiring many hours to reite. (Theauthor had 750 digits well memorized and almost had one thousand at age 16 whenhe thought the reord was only a thousand. He has sine forgotten most all but theinitial 50 whih he memorized at age 11.)

π = 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 · · ·Historially, the value π ≈ 22/7 was used and is within 0.04% of the true value.Suh a rational approximation was useful before alulators were invented and oldergeometry books have many problems whih were done very easily using this value.The urious value π ≈ 355/113 an easily be remembered beause eah of the �rstthree odd number is repeated one and is even loser to the true value. π2 ≈ 9.8696 · · ·is surprisingly lose to 10, our preferred base. When students omit parentheses indenominators on their alulators, their answers are often about an order of magnitudeo� for this reason.Extending the above de�nition of π results in its most ommon usage: angleNumbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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128 NUMBERS LESSON 15. TRANSCENDENTAL MEDITATIONSmeasurement. The radius of a irle seems like a useful unit to measure ar lengthsor angles. Note how the irumferene of a unit irle (one with r = 1) is 2π ≈
6.28318 · · ·. An ar the length of one radius is known as a radian and there are 2πradians in one revolution or full irle (360◦). Thus π radians are 180◦ and 1 radianis 57.2957795 · · ·◦ or 57◦17′44.806 · · ·”. The onversion of radians to degrees is doneby multiplying the radians by 180◦/π. To onvert degrees to radians, multiply thedegrees by π/180◦. The irle below is partitioned into standard angle measure indegrees. It is important to know these.1 Mathematiians like to think of a radian asthe proper serving size of pie, just ever so slightly less than 1/6.
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330Pi shows up in some unusual plaes, espeially in probability. Bu�on's needle isone of the originals but there are many variations, suh ashttp://www.wikihow.om/Calulate-Pi-by-Throwing-Frozen-Hot-Dogs whih isfairly self-explanitory.15.4 The Story of eAnother important number to mathematis has a muh shorter history than π.Logarithm means ratio number. Although Napier's usage was slightly di�erent,the modern de�nition is:
logb a = c if and only if bc = a, b > 0, and b 6= 1.We thus see that exponentiation (exp) is an inverse operation of logarithm(log). Inverse operations have already �gured prominently as in subtration is theinverse operation of addition and division is the inverse operation of multipliation.Another important one is square root as the inverse operation of squaring. Inversefuntions an have important restritions whih di�er from the original funtion!Logs an be de�ned to any positive base (exept 1), but two bases have beomemost prevalent: b = 10 (for ommon logs), and b = e (for natural logs). Both1Knowing the radian values is also important but haven't been put on this graphi yet.©MMIX Ke
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15.5. GEOMETRIC CONSTRUCTIONS 129appear on most alulators. The base is often omitted and high shool and hemistrystudents an usually assume log x = log10 x. However, in ollege math and physis,
log x = loge x.

loge x = 2.30258 · · · log10 x where 2.30258 · · · = loge 10 = 1
log10 e

ln x is fairly ommonly used for natural logs (and now rarely looks like 1n).Napier's base was b = .9999999 = 1 − 10−7, whih may be only slightly more un-derstandable when you realize that deimal frations were not yet widely used�Napier atually being the one to invent and popularize the deimal point! In makingthis hoie, Napier ame within epsilon (a hair's breadth) of disovering the limit of
(1 − 1/n)n as n tends to in�nity, whih is merely the reiproal of (1 + 1/n)n as ntends to in�nity.
lim

n→∞
(1 + 1

n
)n = e.This latter value is:

e = 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 · · ·Logarithms were quikly adopted by sientists all over the world beause theysimpli�ed alulations by turning multipliation and division into table look-ups,addition and subtration, and then another table look-up to �nd the antilog. Likewe saw in sienti� notation, the deimal part of a logarithm is often alled themantissa. The integer portion is alled the harateristi.15.5 Geometri ConstrutionsThe transendental story really began with the restritions the anient Greeks(Plato) put on their Geometri Construtions. The only tools allowed were anunmarked straight-edge and a pair of ompasses. (Most soures speify a om-pass, but some onstrutions require two.) In Geometry we still di�erentiate betweenonstruting, drawing, and skething. In a drawing, rulers and protrators areallowed, whereas a sketh may be a free-hand representation.The Greeks quikly mastered many onstrutions, suh as for the regular pentagon,perpendiular bisetor, equilateral triangle, et., whih must still be learned by highshool geometry students. However, try as they might, they ame up with four whihde�ed solution. These four unsolved problems of antiquity remained so until the1800's. They are:1. Squaring a irle (onstrut a square with area equal to a given irle);2. Dupliating a ube (onstrut a ube with twie the volume of a given ube);3. Triseting an arbitrary angle;Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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130 NUMBERS LESSON 15. TRANSCENDENTAL MEDITATIONS4. Construting a regular heptagon (or atually all regular polygons).During the 1800's, advanes in mathematis enabled mathematiians to provethem all unsolvable under the onstrution rules then in vogue. An important partof the solution was to ouh the problem in terms of algebrai, rather than geometriterms. One soon disovers that onstrutions with straight-edge and ompass rep-resent rational operations and square roots, but not ube or higher roots. Thus ifa ube root is unavoidable, the onstrution is impossible. The algebrai equationsinvolved have what are known as algebrai roots.In 1844 the Frenh mathematiian Joseph Liouville (1809�1882) proved nonal-gebrai or transendental numbers existed. His proof was not simple, but allowedhim to produe several examples, the most famous is known as Liouville's numberand an be written either as 0.110001000000000000000001 · · · or 10−(1!) + 10−(2!) +

10−(3!) + 10−(4!) + · · ·. Another favorite example is 0.1234567891011 · · ·, where thenatural numbers our in order. Integers of this form are known as SmarandanheConatenated Numbers and work on their prime fatorization an be viewed here.2Although it had been already shown in 1737 by Euler that e and e2 and in 1768 byLambert that π were all irrational, it took many more years before they were provedto be transendental.In 1873, Charles Hermite (1822�1901) proved e was transendental.He wrote �I shall risk nothing on an attempt to prove the transendane of π . Ifothers undertake this enterprise, no one will be happier than I in their suess. Butbelieve me, it will not fail to ost them some e�ort.�But in 1882, Ferdinand Lindemann (1852�1939) proved π was transendental andoined the term.Transendental numbers are irrational numbers that are not the roots of alge-brai equations.The transendane of π �nally solved, all-be-it in the negative, the problem ofsquaring the irle. Sine π is not algebrai, a segment of length the square root of πis impossible to onstrut.In 1795 Gauss proved that it is possible to divide the irumferene of a irleinto n equal parts when n is odd, if n is either a prime Fermat number or a produtof di�erent prime Fermat numbers. He was 18. It was published in 1801 in his majorwork Disquisitiones aritmetiae.In 1837 Wantzel published a proof that no other regular polygons an be on-struted, thus settling in the negative the question of the onstrutability of the regu-lar heptagon. However, the regular heptadeagon (17-gon) is onstrutable! Wantzel2http://www.worldofnumbers.om/fatorlist.htm©MMIX Ke
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15.6. MANY MORE TRANSCENDENTALS 131also proved that the angle of 60◦ was not trisetable sine the equation 4x3−3x = 1/2has no roots whih are rational or rational ombinations of square roots. Wantzel isalso responsible for the developments proving that the ube root of 2 is also notonstrutable with the same year usually given.15.6 Many More TransendentalsAlthough π and e are the two most famous transendental numbers, there areplenty more. Just as the reals an be divided into two disjoints sets, i.e. the rationalsand irrationals, the irrationals (or reals) an be similarily subdivided into algebraisand transendentals. Another way to lassify the real numbers is as any numberthat an be written as a deimal fration. These deimals are of three types: 1)terminating; 2) nonterminating but repeating; and 3) nonterminating, nonrepeating.We explored the terminating and repeating deimals in Numbers Lesson 9 and on-luded they were all rational numbers. This last lass, however, is another way toharaterize the irrational numbers.There are more irrational numbers than rational numbers.This is fairly lear sine the rational numbers were denumerable, but the real num-bers, made up of the rational numbers and irrational numbers, were nondenumerable.Logarithms and the trigonmetri funtions are examples of transendental fun-tions introdued and studied in the high shool math urriulum.Algebrai numbers are enumerable! Almost all real numbers are transendental.It has been very di�ult to prove numbers to be transendental. David Hilbert(1862�1943) hallenged the mathematial ommunity in 1900 with a list of 23 un-solved problems in mathematis of utmost importane. In fat, the quote usedto open this lesson ame from this speeh. The seventh problem was to prove thatfor any algebrai number (a 6= 0 or 1), and any irrational, but algebrai number b,
ab is always transendental. The �rst in 1929 and the seond a year later, the Rus-sian mathematiian Gelfond proved Hilbert's two examples, eπ = i−2i, and 2

√
2 to betransendental and in 1934 proved the general ase.The status of many numbers remains unknown: ππ, ee. Others: πe, 2e, and 2π havenot even been proved to be irrational! The sin 1◦ is algebrai, whereas sin(360◦/2π) =

sin(1 rad) = 1
1!
− 1

3!
+ 1

5!
− 1

7!
+ 1

9!
− 1

11!
· · · is transendental.
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132 NUMBERS LESSON 15. TRANSCENDENTAL MEDITATIONS15.7 Transendental HomeworkEah problem is worth two points, exept as noted.1. Evaluate the following rational number and ompare it relative to e: 58, 291

21, 444
.2. Evaluate the following rational number and ompare it relative to e2: 158, 452

21, 444
.3. Find a deimal approximation for the real number halfway between e and π.4. Find a deimal approximation for the real number halfway between πe and eπ.5. Find the irumferene of a irle with diameter of 7", using the approximation

π ≈ 22/7.6. Find the exat and approximate area for a irle with radius 5m. (Be sureto inlude proper units!)7. Give, to the nearest hundredth square foot, the area that an be irrigated by airular sprinkler that spouts water 60' as it rotates around a �xed point. Givethe irumferene of the region to the nearest tenth foot.8. A irle has area 100π in2. Find the exat radius, diameter, and irumferene.9. On a 12" pizza, what does the 12" refer to? How many times as muh of eahingredient is needed for a 16" pizza with the same thikness? What is the areaof eah slie when a 16" pizza is divided evenly among 6 people? (see textbook8.9:13).10. Eight metal disks equally, but maximally sized, are ut out of ametal sheet 18" by 36". The rest is not used. What is the areaof the metal that is not used? What perent of the metal is used?(see textbook 8.9:14).
©MMIX Ke
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15.7. TRANSCENDENTAL HOMEWORK 13311. Find a an or bottle with a irular base. Measure the diameter (d) as auratelyas possible. Measure the irumferene (C) with a tape measure or by rollingthe an on the ruler. Calulate the C/d ratio to the nearest hundredth. Whatnumber should it approximate? Explain any di�erene?12. A sheik dies with 3 sons and 17 amels. Earlier he had told his steward to givethe youngest son 1/2 his amels; his middle son 1/3 his amels; and his oldestson 1/9 his amels. Without any frational amels, how did the steward do it?How many amels did eah son get? (This is a puzzle question.)13. Find whih ordinal number orresponds to Andrew Jakson's presideny (asin whih president was he?) and what year he was �rst eleted. Relate thisinformation to the number e.14. Add the �rst, then seond, then third, ... terms in the following sequene:
1
0!

+ 1
1!

+ 1
2!

+ 1
3!

+ 1
4!

+ 1
5!

+ 1
6!

+ 1
7!

+ · · · What transendental number does theresulting series appear to approah?15. Add the �rst, then seond, then third terms, · · · in the following sequene:
4
1
− 4

3
+ 4

5
− 4

7
+ 4

9
− 4

11
+ 4

13
−· · ·. What transendental number does the resultingseries appear to approah (from above and below! and allbeit very slowly)?16. (Three points:) Convert 57◦ and 196◦ into radians and 5π/9 into degrees.17. (Three points:) Evaluate: log3 81, log10 100, and log9 3 without using a alu-lator.18. Convert log4 x = 3 into exponential form and solve for x.19. Read setions 8.8 and 8.9 in your geometry text. See problems 8.8: 3, 5, 12;8.9: 1, 5, 11, and 12.20. Bonus: Look up Napier's Bones or Napier's Rods in an enylopedia orditionary. What were they? How many were there? What did they look like?How did they work? What speie bone were they?Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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Numbers Lesson 16Imagine More Complex Numbers
eiπ + 1 = 0 is the most remarkable formula in mathematis FeynmanThis lesson motivates the omplex numbers as solutions to ertain polynomialsand introdues them as the artesian produt of the reals and imaginaries. Complexnumbers are added, subtrated, multiplied, divided, and their magnitude found. Wegraph them, introdue the polar form, and �nd roots in that form. We lose with alist of the Greek alphabet and a summary of errata and future improvements.16.1 Father of Complex Powers: Abraham deMoivreAbraham de Moivre (1667�1754) was born in Frane but moved to England while ateenager for politial refuge (after the law proteting protestants was lifted). There hehaned to met Newton's Prinipia Mathematia and supported himself by leturingand tutoring. He soon established himself as a respeted �rst-rate mathematiian andwas eleted to the Royal Soiety in 1697. He was eventually asked to deide betweenNewton and Leibnitz regarding the invention of the alulus, in a proess some saywas rigged. de Moivre never obtained a permanent teahing position, although hisresearh on probability was sought after as a onsultant for both life insurane andgambling. He outlived his friends, dying the relative poverty whih plagued his life.His name lives on in de Moivre's Theorem given later in this lesson.16.2 The Complex NumbersIt would seem that with so many real numbers, mathematiians would be satis�ed.However, just as negative numbers allowed us to solve equations suh as x+a = 0, sotoo do imaginary numbers, or more aurately omplex numbers, allow us solutionsto all quadrati and higher degree polynomial equations. The hoie of the termimaginary has been somewhat unfortunate, but with exposure and pratie, these135



136 NUMBERS LESSON 16. IMAGINE MORE COMPLEX NUMBERSnumbers an beome just as meaningful as the reals. Consider the following solution.
x2 + 1 = 0

x2 = −1

x = ±
√
−1 = ±i

i =
√
−1 is termed the unit imaginary�all imaginary numbers an be formed asmultiples thereof.For most students, the �rst exposure to omplex numbers is in solving quadratiequations that have no real solutions, suh as x2 − 4x + 5 = 0. Using the quadratiformula, we �nd that the disriminate (the part of the formula under the radial) isnegative (−4)�but how do we take the square root of −4? Using this new symbol

i =
√
−1, and our rules for manipulating radials, it beomes x =

√
4 i = 2i, and thesolutions to this equation are the omplex numbers: 2 ± i. The rules for adding andmultiplying omplex numbers are given below, but if your alulator is in a+bi mode,you an hek this result on it by typing: (2+ i)2 +(2+ i)+ 5 or (2− i)2 +(2− i)+ 5and obtaining the result of zero.Complex numbers are of the form a+ bi, where a ∈ R and b ∈ R.

a is alled the real part, and b (not bi) is alled the imaginary part.Real and imaginary numbers are both �small� subsets of the omplex numbers.Real numbers are represented by a, where b = 0. Whereas, when a = 0, a + biis just bi�the imaginary numbers. The omplex numbers are represented by thesymbol C. A ommon mistake is to refer to the omplex numbers as the imaginarynumbers. However, the imaginary numbers are only a very speial subset of theomplex numbers. The term non-real omplex is often used, sine all real numbersare omplex numbers.Cantor showed the unbelieveable fat that points in a unit square ould be mappedto the points in a unit line segment, as noted earlier in his biography (9.1). Thisproedure an be used to put the omplex numbers into a one-to-one relationship withthe real numbers, thus showing their size to be the same non-denumerable in�nity!
N ⊂ Z ⊂ Q ⊂ R ⊂ CThe omplex onjugate of a + bi is a− bi.Complex numbers often appear in onjugate pairs�see the quadrati formulafor why. i an be treated just like a variable, suh as simplifying powers:

i0 = 1

i1 = i©MMIX Ke
iθ G. Calkins Otober 4, 2009 Numbers and Their App.�pdf 4



16.3. OPERATIONS WITH COMPLEX NUMBERS 137
i2 = −1

i3 = i2i = −1 · i = −i
i4 = (i2)2 = (−1)2 = 1

in = inmod 416.3 Operations with Complex NumbersYour TI-84+ graphing alulator will do extensive alulation with omplex num-bers. (Chek your MODE and be sure you are in a+ bi and not Real or reiθ.)16.3.1 Adding or Subtrating Complex NumbersAdd or subtrating omplex numbers involves adding/subtrating like terms. (Don'tforget subtrating a negative is adding!)
(3 − 2i) + (1 + 3i) = (3 + 1) + (−2i+ 3i) = 4 + 1i = 4 + i

(4 + 5i) − (2 − 4i) = (4 − 2) + (5i+ 4i) = 2 + 9i16.3.2 Multiplying Complex NumbersTo multiply omplex numbers treat them like binomials and use the FOIL method,but simplify i2.
(3 + 2i)(2 − i) = (3 · 2) + (3 · −i) + (2i · 2) + (2i · −i)

= 6 − 3i+ 4i− 2i2

= 6 + i− 2(−1)

= 8 + i

(2 + i)2 = (2 + i)(2 + i) = 4 + 4i− 1 = 3 + 4i

√
−9 ·

√
−16 = i

√
9 · i

√
16 = i2 · 3 · 4 = −12. Notie how our order of operation isimportant (exponentiation before multipliation) as ommonly the inorret answer√

144 = 12 is obtained. If x > 0, then √−x = i
√
x.16.3.3 Dividing Complex NumbersTo divide omplex numbers, multiply the numerator and denominator by theomplex onjugate of the denominator.

2 + 3i

3 + i
=

(2 + 3i)(3 − i)

(3 + i)(3 − i)
=

6 − 2i+ 9i− 3i2

9 − i2
=

6 + 7i+ 3

9 + 1
=

9 + 7i

10
= 0.9 + 0.7i.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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138 NUMBERS LESSON 16. IMAGINE MORE COMPLEX NUMBERS16.3.4 MagnitudeTo �nd the magnitude of a omplex number you �nd its distane to the origin:
|3 + 4i| =

√
32 + 42 =

√
9 + 16 =

√
25 = 5.Magnitude is often onfusingly referred to as absolute value, sine the samesymbol is used. In fat, you must use abs on your TI-84 alulator! Notie how bothare a measure of distane and the Pythagorean Theorem is used here. A ommonmistake is to inlude the i under the radial�avoid that error.16.4 Graphing Complex NumbersComplex numbers are graphed on the omplex plane�the artesian produtof the reals and the imaginaries. As suh, it is very similar to the xy-plane. Thefamiliar x-axis is still the familiar real number line and the y-axis is replaed witha number line ontaining the imaginary numbers. This is often termed an arganddiagram. Cantor showed it was possible to onstrut a one-to-one orrespondenebetween every point in the plane and the real number line. On a unit square one anmap the ordered pair with deimal expansion (0.a1a2a3 · · · , 0.b1b2b3 · · ·) to the realnumber 0.a1b1a2b2a3b3 · · · thus interleaving the deimal expansions. Thus, it wouldseem, the omplex numbers have the same ardinality as the reals.16.5 Polar FormComplex numbers are also often loated on the omplex plane by their distanefrom the origin and angle from the positive x-axis. The angle might be given in eitherdegrees or radians. What your TI-84+ alulator uses is ontrolled both on input andoutput by mode. However, unlike the trig funtions, putting the degree symbol onan angle does not override radian input! By setting a+ bi or reiθ (polar) format andinputting the alternate form, it will interonvert for you.The following relationship named after Euler is often used:

Keiθ = K(cos θ + i sin θ),where sin and cos are the trigonometri relationships disussed in Numbers Lesson12. Thus if K = 1 and θ = π/2 = 90◦, the omplex number loated one unit diretlyabove the origin is obtained. This is i, beause sin 90◦ = 1 and cos 90◦ = 0. r is amuh more ommon hoie of variable to represent magnitude, but the author feelsthe hoie of K will be muh more meaningful and memorable for his students!©MMIX Ke
iθ G. Calkins Otober 4, 2009 Numbers and Their App.�pdf 4



16.6. GREEK ALPHABET 13916.6 Greek AlphabetThe table of Greek letters below with names and phoneti English equivalentsshould be ommitted to memory by the grade A math and siene student.lower upper name equivalent lower upper name equivalent
α A alpha a ν N nu n
β B beta b ξ Ξ xi x
γ Γ gamma g, n o O omiron o
δ ∆ delta d π Π pi p
ǫ E epsilon e ρ P rho r, rh
ζ Z zeta z σ Σ sigma s
η H eta e τ T tau t
θ Θ theta th υ Υ upsilon y, u
ι I iota i φ Φ phi ph
κ K kappa k χ X hi h
λ Λ lambda l ψ Ψ psi ps
µ M mu m ω Ω omega o16.7 Finding nth Rootsde Moivre's Theorem states that zn = kn cis(nθ), where

cis θ is an abbreviation for cos θ + i sin θ.
n may be frational thus z1/n = k1/n cis([θ + 360j]/n)◦, where j is an integerranging from 0 to n − 1. We an apply this to the multipliative identity (1) whihalso has a magnitude of 1. It is lear 1 has two square roots: ±1. Sine −1 has twosquare roots, it should now be lear that 1 has four fourth roots: ±1 and ±i. We anapply de Moivre's Theorem to obtain the eight eighth roots as follows.The Eight Eighth Roots of Unity are ±1, ±i, ±√

2/2 ± i ·
√

2/2. (This lastexpression is generally onsidered ambiguous as to how many points it represents, buthere represents four distint points.) Note how they are very symmetrially arranged(on a irle) on the omplex plane. Note also how the radial relates to sin(45◦+90◦n)and cos(45◦ + 90◦n).16.8 ErrataStudents should organize their booklets for stapling now. Chek to besure you have all your pages in page number order. An oasional funny page sequenewill our. Lessons 12 and 15 had a odd number of pages and a page will be �missing�(ix, x, 104, and 134). These were not replaed with something else this year. Variouspages in the appendies (title, ativities, quizzes, keys) have been omitted this year.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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140 NUMBERS LESSON 16. IMAGINE MORE COMPLEX NUMBERSThis will fore homework to be interleaved! You might have additional homeworkpages and it is your hoie where these are neatly loated. Be sure you have thebox (A.5), omplex number (A.6), and booklet (A.7) ativities, and 1 quiz (B.1). Donot have your test or test key stapled within the booklet (but the released tests (C.1and ?1 ) ARE part of the booklet).Several problems were �xed and �gures added in this revision�many after print-ing, however. A summary of reent/future hanges follows.
• Consider distributing the lessons as shool starts next year.
• Many onverted ativities (set, die, fators, magi boxes) remain di�ult tosqueeze in. Some remain unonverted (TI-84 intro, alulator frations, frationmathup, alulator slopes, 24, logs) but may have been moved into the lessonor into summer algebra.
• Lesson 12 ould be split between Pythagoras and Fermat and the bios ex-panded for Diophantus and Goldbah. Galileo's bio was moved to Stats, perhapstemporarily�I need his quote! The �rst part of 13 ould go with the new lesson.
• The early lessons were split up in 2008 to add a lesson but at least one homeworkquestion was moved after printing in 2009. We have not yet moved the other4 Peano Axioms here. The well-ordered axiom/axiom of hoie is mentionedin both lesson 3 and 14. Eulid's algorithm ould be added. Maybe some oddquestions an be repeated as evens in later lessons.
• Lessons 6 and 7 remain at 6 pages but tend to be dense. Breaking this streahup ould help things as well. Pasal's bio needs a better plae near here.
• Odd solutions should be generated from the beamer/pdf work and made avail-able. The software alulator (TI-SmartView) was used very little.16.9 EpilogueThis doument is not yet a �nished produt�improvement and orretions are anongoing proess. With this fourth pdf version the old html version has been removedfrom the web, exept for the odd solutions. It is, however, a dream ome true. Somework remains to smooth out areas like logi and paradoxes, even out the level ofe�ort required, and make the homework do what I want it to. It is planned forCenter students to take some responsibility to larify the less lear and extend themore interesting aspets. Continued feedbak is appreiated.1Not yet labelled and integrated.©MMIX Ke
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16.10. COMPLEX HOMEWORK 14116.10 Complex HomeworkPerform the following operations with omplex numbers: (Show work!! Only usea alulator to hek your answer.) Eah problem is worth two points, exeptfor problems 6 and 12 whih are 5 points eah.1. (3 + 5i) + (8 + 9i) =

2. (4.5 + 3i) + (3 − 1.5i) =

3. (7 + 13i) − (8 + 2i) =

4. (−5 + 3i) − (3 − 8i) =

5. (−3i) − (13 + 4i) =

10

10 re

i

6. Graph the answers to the problems 1�5 on the grid above.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
iθ G. Calkins



142 NUMBERS LESSON 16. IMAGINE MORE COMPLEX NUMBERS7. (1 + 2i)(1 − 2i) =8. (2 − 3i)(−3 + 2i) =9. (3 + 2i)2 =10. (6 + 8i) ÷ (1 + 3i) =11. |(3 + 5i)| =

10

10 re

i

12. Graph the answers to the problems 7�11 on the grid above.13. Assuming the ube roots of 1 are equally spae around the unit irle, youknow the real one (1), and the two omplex ones are omplex onjugates of eahother; graph them and �nd approximate values for them.
1

1 re

i

14. Re�ne your values for the problem above using the exat trigonometri values inthe table on page 12.4 in Numbers Lesson 12 and hek them on your alulator.©MMIX Ke
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144 APPENDIX A. ACTIVITIESA.1 Ativity: Set Game and Crossword PuzzleOn the bak side is a rossword puzzle using the voabulary words below.The game of Set is a useful way to explore the meaning of this unde�ned word inmathematis.A set dek onsists of 81 ards�all di�erent. There are 81 ardsbeause on four di�erent prop-erties: olor, number, shape,�ll, they have three di�erentstates. The olors are: red,green, and purple. The numberof idential shapes on a ard iseither one, two, or three. Theshapes are: diamond, oval, andsquiggle. The �ll patterns are:�lled, hashed, and empty. some-times referred to as solid, liquid,and gas.The objet of the game is to �nd three ards whih for eah of these four hara-teristis (properties) are either all the same or all di�erent. A good rule to use is: ifthere are exatly two of something, it isn't a set.Let's play a little set (available online. In the game of SET, you will form sets of3 ards as desribed above.One person at eah table will at as the dealer and deal 15 shu�ed ards fae upon the table. Players will initially take turns and after seleting 3 ards, expliitly tellwhether eah of the 4 aspets are the same or di�erent. Magi rule: if 2 are the same,but the third is di�erent, it is not a set. After the ard stak is depleted, playerswill display their sets and espeially all attention to any set with 3 or 4 di�erentaspets.Tally points for eah set: 1 point for eah di�erent harateristi. For example:If you have three diamonds on eah ard with eah a di�erent olor and shade, theset will be two points. The person with the most points wins. (If all the groups areompeting, the table with no ards unsetted will get an extra �ve points for theirmembers.)
©MMIX Ke
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A.1. ACTIVITY: SET GAME AND CROSSWORD PUZZLE 145Name SoreAross5. Homophone of to and too.6. Color of grass, money, et.7. Rhymes with jiggle and not quiteoval.10. More than 2 and less than 4.12. Women's best friend.⋄Down

1. Ready, , Go.2. Red and blue make .3. is the lonliest number . . ..4. State of matter (not gas nor liquid).7. What the tree did to the house allsummer.9. If the door is not losed . . ..11. for the blood we shed.1 2 345 6
7 8 9

10 11
12

Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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146 APPENDIX A. ACTIVITIESA.2 Counting Ativity: Skittles
• Divide a 16 oune (one pound) pakage of SkittleTM; brand andies approxi-mately equally into 7 paper ups.
• Assign eah up to a group. Eah group must tally eah olor and reord theirdata on the hart below. PLEASE do not destroy any evidene until you havedouble heked your results. Do not ontaminate the speimens.Yellow Orange Red Green Purple TotalTable 1Table 2Table 3Table 4Table 5Table 6Table 7TotalIn 2002 there was no yellow, but white, a mystery �avor.
• Disuss variations of the data.
• Be sure to turn this sheet in at the end of the lass period.We will assemble this data and you will use it again in a few weeks for statistis.

©MMIX Ke
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A.3. FACTOR ACTIVITY 147A.3 Fator AtivityOpen books and open table quiz. Hand in one per table.Aepted only when the answers are orret. Keep a opy in your notes.1. Find all the fators of 18.
2. Add all the fators of 18, exept for itself.
3. Find all the fators of 30.
4. Add all the fators of 30, exept for itself.
5. Find all the fators of 42.
6. Add all the fators of 42, exept for itself.
7. Find all the fators of 54.
8. Add all the fators of 54, exept for itself.
9. What is the pattern?
10. Does it ontinue?Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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148 APPENDIX A. ACTIVITIES
A.4 Magi Boxes (Base 2) Ativity1 3 5 79 11 13 1517 19 21 2325 27 29 31

2 3 6 710 11 14 1518 19 22 2326 27 30 31
4 5 6 712 13 14 1520 21 22 2328 29 30 31
8 9 10 1112 13 14 1524 25 26 2728 29 30 31
16 17 18 1920 21 22 2324 25 26 2728 29 30 31

Eah table must selet one person tobe their failitator. This designation maypersist for several weeks until new seatingor other needs determine a hange. Thefailitators leave the room and are giventhis instrution sheet. An assistant willgo over with them the instrutions on thebak, and have them return to their table.Eah failitator must ask table mem-bers in turn to seretly pik any numberbetween 1 and 31. Table members pointto eah box beside in whih their num-ber appears. The failitator will then tellthem their seret number!After eah person gets at least oneturn, the failitator will try to help tablemembers understand how the trik works.Solution: Add up the �rst number ineah of the boxes the person hose.The number you alulated is the same asthey have hosen.Reasoning: The �rst number in eahbox is a power of two. 1, 2, 4, 8, and16. Eah box represents the power: box0 is 20, box 1 is 21, box 2 is 22, et. Thenumbers have been arranged in eah boxsuh that the ombination of the powerswill orrespond to its binary representa-tion. For example 19 is equal to 16 + 2+ 1, or 19 = 100112, and you'll �nd 19in what we will all box 0 (20=1), box 1(21 = 2), and box 4 (24 = 16).

©MMIX Ke
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A.5. MAXIMAL BOX VOLUME ACTIVITY 149A.5 Maximal Box Volume AtivityTask: Given a piee of paper 8”× 10”, �nd all dimensionS of the box (no top)with the largest volume whih an be formed by removing equal squares from eahorner and folding up the resulting tabs on eah side.

A.5.1 Method I (sissors and water)Use sissors and trial and error. (Sorry, no water will be provided.)A.5.2 Method II (TI-84 graphing alulator)Volume = height × width × length
V = x× (8 − 2x) × (10 − 2x)Press the Y= key and enter the equation (with Y1 being V above).Press the WINDOW key and enter the following:

Y min = 0;Xmax = 8;Xscl = 1;Ymin = −20;Y max = 60, Y scl = 10Press the GRAPH key.To �nd the maximum value in the graph pressing CALC key (2nd TRACE). Press4 for maximum.One you request maximum, �LeftBound?� appears on the sreen. Arrow over to theleft side of the maximum. Press ENTER. �RightBound?� now appears. Arrow overto the right side of the maximum and press ENTER. �Guess?� now appears. Arrowtoward the maximum and press ENTER.The sreen shows the maximum volume possible (y =) and the orresponding x value.Finish by alulating the other dimensions. What is the meaning of the negativevolume?Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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150 APPENDIX A. ACTIVITIES

funtion and window settings
graph of funtion and maximumA.5.3 Method III (very simple alulus)simplify: V = x(80 − 36x+ 4x2)

V = 80x− 36x2 + 4x3

V ′ = 80 − 72x + 12x2 (To �nd the slope of a polynomial at any point, multiply theexponent by the oe�ient and put it down as the new oe�ient. Write down yourvariable with the exponent redued by one. If there is no variable, the slope is zero,so don't write anything for that term.)
V ′ = 3x2 − 18x+ 20 = 0 (rearranged order, ÷4, and set V ′ to zero beause slope iszero at a maximum.)

x = (18 ±
√

324 − 240) ÷ 6 (Use the quadrati formula to solve the resultingquadrati equation.)
x = 3 ±

√
21/3 ≈ 1.47247 · · ·Thus the other sides are (8 − 2x) ≈ 5.055 and (10 − 2x) ≈ 7.055.Note: fatorable quadratis and integer solutions an be obtained by starting withsquare paper.Note also: this is the solution to the third bonus questions (either question number43 or 83) of the May 1998 semester tests (Geometry, Algebra II, Prealulus). It alsoappeared on that year's Calulus AB �nal test.

©MMIX Ke
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A.6. COMPLEX NUMBER ACTIVITY (LESSON 16) 151
A.6 Complex Number Ativity (Lesson 16)Please use your TI-84+ alulator or TI-nspire with TI-84+ keypad for the fol-lowing ativities. How to do many of them without your alulator is illustrated inthe leture notes.Find the i key on your alulator (2nd) and (.) and ENTER The answer shouldbe i or possibly 1e90i.

√
−1 and ENTERDon't be surprised with an error.MODE set a+ bi and ENTRY (2nd ENTER) and ENTER.The answer should now be i. Real mode may be safest until you understand whatit is trying to do!MODE reθi

√
−1 and ENTER Your answer should be 1e90i.Set your MODE bak to a + bi.(3 - 2i) + (1 + 3i) ENTER should give you: 4 + i.

(3 + 2i) ∗ (2 − i) ENTER should give you: 8 + i.Note: the multipliation sign is optional.
(2 + 3i)/(3 + i) ENTER should give you: .9 + .7i.
abs(3 + 4i) (MATH NUM 1) should give you: 5.Note: the alulator uses abs for both absolute value and magnitude.
ii ENTER should give you .2078775764!Amazing! Imaginary to imaginary give you a real number. Atually, this is onlythe primary answer, other values are also possible.
i−2i ENTER and eπ ENTER both should give you 23.14069263.
sin(i) and cos(i) should give you an error on the TI-83 and TI-84, but worksproperly on the TI-85 and TI-86.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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152 APPENDIX A. ACTIVITIES
A.7 Numbers Booklet Veri�ation/Stapling AtivityDiretions: You may work together, but answer eah question arefully using yourown Numbers booklet. Take time to put the booklet in THIS order. Make a listby table of who is missing what (nonbonus) pages.1. Page i (blue front over): Full title of booklet.2. Page iii: Title for Setion 2.5.3. Page v: Setion number for Auray vs. Preision.4. Page vii: Title for Setion A.4.5. Page xii: �Convey my lifelong for numbers.�6. Page 2: Q7: Leave textbook home until when?7. Page 7: John Venn's year of death.8. Page 9: Q5. Cost of new toy in lams.9. Page 12: Another word for axiom (top of page).10. Page 19: Eratosthenes' nikname (bottom of page).11. Page 25: Who said �Ah! I reognize the lion by his paw.�12. Page 31: Q5. Largest fatorial alulated exatly on your TI-84 alulator.13. Page 35: Restrition on �Anything to the zero power is 1.�14. Page 41: Q2. Zeroes in a googolplex.15. Page 43: Latin quote from Deartes.16. Page 49: Q8. Counterexample to large dangerous bears.17. Page 56: What I.OU6.(O4.O5.NO6) is equal to (middle of page)?18. Page 58: Q9. Objets headed toward St. Ives (in base 7).19. Page 60: Group axiom 1.20. Page 66: Q20. 225 − 1 in hexadeimal.21. Page 70: Done when multiplying/dividing inequality by a negative (middle ofpage).©MMIX Ke
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A.7. NUMBERS BOOKLET VERIFICATION/STAPLING ACTIVITY 15322. Page 76: Q12.13 Repeat length for 1
13
.23. Page 83: Why isn't 12 am or 12 pm valid (middle of page).24. Page 85: Q14. 2.4526 m÷ 8.4.25. Page 89: What Q.E.D. means (middle of page).26. Page 93: Q6 (go all the way!).27. Page 97: What is speial about a 37◦, 53◦, 90◦ triangle (middle of page)?28. Page 102: Q6. Length of other two sides in 30◦, 60◦, 90◦ triangle.29. Page 106: Number system used to label quadrants (bottom of page).30. Page 114: Q16. Domain and range of: y = x2 + 5x+ 6.31. Page 120: What is the ontinuum hypothesis?32. Page 123: Q8. Counterexample showing negatives are not losed under multi-pliation.33. Page 127/129: What deimal plae has the �rst idential digit in the deimalrepresentations of π and e?34. Page 133: Q18. Solve for x: log4 x = 3.35. Page 139: Three pages �missing� page numbers (bottom of page).36. Page 142: Q14. Exat/approximate values of omplex ube roots of 1.37. A.2 Bonus: Page 146: Total skittles for your (original) table group.38. A.5 Page 150: Square side length to ut in 8”×10” orners to maximize volume(page 2 sreen).39. A.4 Bonus: Page 148: Whih boxes have 31 in them (speify by number inupper left)?40. A.7 Bonus: Page 153: Express 1/(last question number) exatly as a deimalfration.41. B.1 Page 158: Q9. 100 expressed as sum of two triangular number.42. C.1 Released test: Page 161: Q8 LCM(270, 600).43. C.2 Released test: (page 4): Q17. 4 anient impossibilities.Your booklet should now be ready for stapling. Bonus for early.Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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154 APPENDIX A. ACTIVITIES
A.8 Number/Phrase Assoiation AtivityComplete the phrase identified by these numbers, words, and initialletters.1 - D at a T 1 - W on a U2 - T D (and a P in a P T)3 - P for a F G in F 3 - B M (S H T R) 3 - L K4 - H of the A 4 - Q in a G 4 - T on a C U5 - D in a Z C 5 - F on the H 6 - W of H the E7 - H of R 7 - W of the A W 7 - V of S7 - D (with S W) 7 - B M and the E7 - S 7 - D S8 - P on N A 8 - P of S in the E L 8 - S on a S S9 - I in a B G 9 - P in the S S 9 - J of the S C10 - A in the B of R 10 - C in the D11 - P on a F T 12 - S of the Z 12 - D of C13 - C in a S 13 - S on the A F 13 - D in a B D16 - O in a P 16 - M on a D M C (YHH and a B of R)18 - H on a G C 18 - W on my B R20 - Y that R V W S 24 - H in a D26 - L of the A29 - D in F in a L Y30 - D H S A J and N 31 - I C F at B-R32 - D F at whih W F36 - I in a Y40 - T (with A B) 40 - D and N of the G F50 - C in a H D 50 - W to L Y L54 - C in a D (with the J)56 - S of the D of I 57 - H V60 - S in a M 64 - S on a C66 - B in the B 76 - T in the B P80 - D around the W 88 - K on a P 90 - D in a R A99 - B of B on the W101 - D 200 - D for P G in M212 - D at whih W B435 - M of the H of R500 - H of B C 600 - R in the C of the L B1000 - W that a P W 1000 - S (that a F L)1001 - A N20,000 - L U the S
©MMIX Ke
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156 APPENDIX B. QUIZZESName SoreB.1 Quiz over Numbers Lessons 1�4Open books and open group quiz. Hand in one per table.Be sure answers are orret! Keep a opy in your notes.1. List table members who do not have their syllabus signed by a parent.2. Set intersetion and union are related to and's and or's. Whih is whih andwhy?3. List one quote by eah of the three greatest mathematiians and indiate whoseis whih.4. What is your group's best answer for Numbers Lesson 1, problem 9?5. What is your group's best answer for Numbers Lesson 1, problem 10?6. Show work for Numbers Lesson 2, problem 7.7. What is your group's best answer for Numbers Lesson 3, problem 8a?8. What is your group's best answer for Numbers Lesson 4, problem 7?9. Express the number 100 as the sum of two triangular numbers.10. List �ve ommon Latin terms and what they mean.
©MMIX Ke
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158 APPENDIX C. RELEASED TEST/KEYName SoreC.1 Geometry, Test 1, September 24,2004�Released TestOne 3"x5" noteards and TI-84+ type graphi alulator allowed.Please plae answers on the short underlines provided to theleft of the problem symbol. Eah of the 21 question numbershas equal weight (i.e. 5 points eah). Question subparts haveabout equal weight. Read the questions arefully. Hand in anyused srath paper with the test for potential partial redit.SHOW YOUR WORK
5

1. Form the best math among the following.Triangular Numbers A. 0, 1, 4, 9, . . .Squares B. 0, 1, 1, 2, . . .Perfets C. 0, 1, 3, 6, . . .The Fatorials D. 6, 28, 496, . . .The Fibonai Numbers E. 1, 1, 2, 6, . . .

5

2. Perform the following set operation: {B, r, i, t, n, e, y} ∩ {S, p, e, a, r, s}.(Three bonus points: what is the ardinality of eah set?)
5

3. Perform the following set operation and sketh the orresponding Venndiagram. {B, r, i, t, n, e, y} ∪ {S, p, e, a, r, s}.
5

4. Expliitly use the reursive de�nition of n! to simplify then evaluate: 7!
4!
.

5

5. Give the value of the �ve smallest Fermat numbers.
5 bonus

Five bonus points for orretly desribing the form a Fermat number has inbinary. Test 1 ontinued next page.
25 + 8©MMIX Ke

iθ G. Calkins Otober 4, 2009 Numbers and Their App.�pdf 4



C.1. GEOMETRY, TEST 1, SEPTEMBER 24, 2004�RELEASED TEST 159
5

6. Form the best math among the following.versus A. make weightmantissa B. aboutira C. againstmodulo D. that isid est E. a small measure
5

7. Expliitly indiate the prime fatorization of 270 and 600. Be sure to useexponents and list the prime fators in inreasing order.
5

8. Find LCM(270,600).
5

9. Convert 54310 into its base 6 value.(Three bonus points: Convert 5436 into its base 10 value.)
5

10. Depit a Pasal's triangle with sides of length 6. Two bonus pointsfor naming the mathematial/alulator funtion whih will give eah entry diretly.Two more bonus points for giving the formula for evaluating this mathematialfuntion.
Test 1 ontinued next page.

25 + 7 Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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160 APPENDIX C. RELEASED TEST/KEY
5

11. From the onditional: �If no louds, then no rain.�; write the:a. Converseb. Inverse. Contrapositived. pe. q.
10

12,13. You are given a three input logi gate whose output is desribed om-pletely as the most ommon input. Fill in the missing two input and eight outputvalues in the table below. Four bonus points: how an the output be desribedsimply by onsidering separately p = 0 and p = 1?
p q r most(p, q, r)0 0 00 0 10 1 00 1 11 0 01 0 11 1 01

5

14. Solve for x and graph the solution set of −2x+ 9 < 1.
5

15. Express the unit fration 1
13

as a deimal fration exatly. How many digitsare there in the portion whih repeats? Five bonus points for identifying whihmultiples of 1
13

an be represented by starting this repetition at a di�erent point?Test 1 ontinued next page.
25 + 9©MMIX Ke
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C.1. GEOMETRY, TEST 1, SEPTEMBER 24, 2004�RELEASED TEST 161
5

16. Form the best math among the following.Paua, sed matura A. ArhimedesBook of Nature is written in mathematial haraters B. NewtonCogito ergo sum C. Bernoulli... playing on the seashore...smoother pebble D. GalileoEureka, Eureka E. GaussF. Desartes
10

17,18. Show work evaluating by hand: 1

3
+

1

4
1

5
+

1

2

5

19. Express the number representing the diagonal of a unit square in severalforms (3 points). Be sure to inlude at least one with a frational exponent (2 points).
5

20. Rationalize the demoninator and simplify ompletely: √

225
18
.Bonus Question, 5 bonus points

0

21. How muh does the banana weigh with peel?

I have been areful to not allow others to see my work and the work on thisexamina-tion is ompletely my own. This examination is returned and assoiated solutions are provided for my own per-sonal use only. I may not share them exept with onurrent lassmates taking the idential ourse. Other uses are not ondoned. Iwill dispose of it properly. signature dateEnd of Test.�Chek your work.�Have a nie day!
25 + 5 Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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162 APPENDIX C. RELEASED TEST/KEYName SoreC.2 Geometry, Test 1, September 24,2004�Released TestOne 3"x5" noteards and TI-84+ type graphi alulator allowed.Please plae answers on the short underlines provided to theleft of the problem symbol. Eah of the 21 question numbershas equal weight (i.e. 5 points eah). Question subparts haveabout equal weight. Read the questions arefully. Hand in anyused srath paper with the test for potential partial redit.SHOW YOUR WORK
5

1. Form the best math among the following.Triangular Numbers A. 0, 1, 4, 9, . . .Squares B. 0, 1, 1, 2, . . .Perfets C. 0, 1, 3, 6, . . .The Fatorials D. 6, 28, 496, . . .The Fibonai Numbers E. 1, 1, 2, 6, . . .

5

2. Perform the following set operation: {B, r, i, t, n, e, y} ∩ {S, p, e, a, r, s}.(Three bonus points: what is the ardinality of eah set?)
5

3. Perform the following set operation and sketh the orresponding Venndiagram. {B, r, i, t, n, e, y} ∪ {S, p, e, a, r, s}.
5

4. Expliitly use the reursive de�nition of n! to simplify then evaluate: 7!
4!
.

5

5. Give the value of the �ve smallest Fermat numbers.
5 bonus

Five bonus points for orretly desribing the form a Fermat number has inbinary. Test 1 ontinued next page.
25 + 8

Key�-released 9/19/05 129/100

5 CADEB5+3
{e, r} 2 pt eah; 1 pt {} bonus: 7, 6, 25
{B, r, i, t, n, e, y, S, p, a, s}1 pt for box around VD5 210
7!
4!

= 7·6·5·4!
4!

= 42 · 5 = 210.2 pts expliit anellation of 4!, 1 pt ans5
220

+ 1, 221
+ 1, 222

+ 1, 223
+ 1, 224

+ 1, 225
+ 13, 5, 17, 257, 65537, 4294967297; an end optional5 112, 1012, 100012, 1000000012, et.Starts/ends with 1, has 2n − 1 zeroes in between.33©MMIX Ke
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5

6. Form the best math among the following.versus A. make weightmantissa B. aboutira C. againstmodulo D. that isid est E. a small measure
5

7. Expliitly indiate the prime fatorization of 270 and 600. Be sure to useexponents and list the prime fators in inreasing order.
5

8. Find LCM(270,600).
5

9. Convert 54310 into its base 6 value.(Three bonus points: Convert 5436 into its base 10 value.)
5

10. Depit a Pasal's triangle with sides of length 6. Two bonus pointsfor naming the mathematial/alulator funtion whih will give eah entry diretly.Two more bonus points for giving the formula for evaluating this mathematialfuntion.
Test 1 ontinued next page.

25 + 7

5 CABED5
270 = 2 · 33 · 5 600 = 23 · 3 · 52

5 Use TI-8x+ MATH NUM 8
GCF (270, 600) = 30Also, 270 = 30 · 9 600 = 30 · 20

LCM = 270·600
GCF (270,600)

= 270·600
30

= 270 · 20 = 5400so 5400 = 20 · 270 = 9 · 600 = 23 · 33 · 525+3 543/6=90R3; 90/6=15R0; 15/6=2R3; so 54310 = 2303 .Chk: 2 · 63 + 3 · 62 + 3 · 60 = 2 · 216 + 3 · 36 + 3 · 1 = 432 + 108 +
5436 = 5 · 62 + 4 · 61 + 3 · 60 = 180 + 24 + 3 = 207

= 10006 − 136 = 216 − 9 = 2075+4
1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Combination or nCr or Choose/Choiesee MATH PRB 4 on TI-8x+
nCr = n!

r!(n−r)!

32 Numbers and Their App.�pdf 4 Otober 4, 2009 ©MMIX Ke
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5

11. From the onditional: �If no louds, then no rain.�; write the:a. Converseb. Inverse. Contrapositived. pe. q.
10

12,13. You are given a three input logi gate whose output is desribed om-pletely as the most ommon input. Fill in the missing two input and eight outputvalues in the table below. Four bonus points: how an the output be desribedsimply by onsidering separately p = 0 and p = 1?
p q r most(p, q, r)0 0 00 0 10 1 00 1 11 0 01 0 11 1 01

5

14. Solve for x and graph the solution set of −2x+ 9 < 1.
5

15. Express the unit fration 1
13

as a deimal fration exatly. How many digitsare there in the portion whih repeats? Five bonus points for identifying whihmultiples of 1
13

an be represented by starting this repetition at a di�erent point?Test 1 ontinued next page.
25 + 9

5 If no rain, then no louds.If louds, then rain.If rain, then louds.no louds (has if: -1
2
point)no rain (has then: -1

2
point)10+4

000101111 1
p = 0 ⇔ q ∧ r p = 1 ⇔ q ∨ r
p selet gate type: p = 0 is and; p = 1 is or.5 3 pts: −2x < −8 x > 42 pts: diretion, open irle5+5

1
13 = 0.076923 6 digits repeat.
{1, 3, 4, 9, 10, 12} see also {2, 5, 6, 7, 8, 11}Note the symmetry in these groups. 34©MMIX Ke
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5

16. Form the best math among the following.Paua, sed matura A. ArhimedesBook of Nature is written in mathematial haraters B. NewtonCogito ergo sum C. Bernoulli... playing on the seashore...smoother pebble D. GalileoEureka, Eureka E. GaussF. Desartes
10

17,18. Show work evaluating by hand: 1

3
+

1

4
1

5
+

1

2

5

19. Express the number representing the diagonal of a unit square in severalforms (3 points). Be sure to inlude at least one with a frational exponent (2 points).
5

20. Rationalize the demoninator and simplify ompletely: √

225
18
.Bonus Question, 5 bonus points

0

21. How muh does the banana weigh with peel?

I have been areful to not allow others to see my work and the work on thisexamina-tion is ompletely my own. This examination is returned and assoiated solutions are provided for my own per-sonal use only. I may not share them exept with onurrent lassmates taking the idential ourse. Other uses are not ondoned. Iwill dispose of it properly. signature dateEnd of Test.�Chek your work.�Have a nie day!
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