Particle-Part. Part.- Mesh Ewald Method Accuracy Investigations
Keith G. Calkins (Department of Chemistry, University of Rochester, Summer 2006 RET Program),
(Keith teaches public high school at the Berrien County Math & Science Center at Andrews University)
Advisor/Mentor: Harry Stern (Assistant Professor, Department of Chemistry, University of Rochester)

Abstract
We report on the experimental mesh spacing and assignment order on the estimated RMS error, thermodynamic properties, and timing for the molecular dynamics software Ewald-Sim. This program can optionally use the Ewald-Sim method to substantially reduce the execution time required to handle the long-range potential. Additional savings can be realized by assigning the highest assignment orders with larger mesh spacing. This trade-off is valid in as great a density as computer runs allow available resources.

RMS Error Sum vs. Mesh Assignment Order

Figure 1. The Total Estimated RMS Error Depends via Power Laws on Mesh Spacing and Assignment Order.

Introduction
The Stern group at the University of Rochester Department of Chemistry uses a molecular dynamics simulation package developed by Harry Stern which has many adjustable parameters. Some of these parameters were documented while learning to use the Mac/Unix work environment.

Molecular dynamics uses a computer program to mathematically model a physical system, in these cases atoms and molecules. One starts with certain initial values and evolves the system in time under the influence of the forces to which the interacting particles to calculate new positions and momenta. The Ewald-Sim method reduces computational time by splitting any long-range force into a short-range force due to the particle-particle calculations and a smoothly varying force which is approximated by particle-mesh calculations. For this reason the hybrid system is known as the Particle-Particle Particle-Mesh Ewald Method.

We examined how the total estimated RMS error affected the calculations of the average potential energy per molecule, the radial distribution function, and the dielectric constant. Since the total estimated RMS error is strongly dependent on the mesh spacing and assignment order, we first determined this dependence. Then various parameter ranges were explored further to find where problems arose. Lastly, collected timing information was analyzed to help optimize future runs.

The TIP4P potential model for water has been well studied and has known limitations. However, it has the advantage of fast evaluation over more complex models. This is important when dealing with a large number of variables.

RMS Error vs. Mesh and Assignment Order

Figure 2 at left shows how the total estimated RMS error (the sum of both the real and reciprocal space estimated values) varies based on assignment order and mesh spacing. Apparently several options are available to obtain a total estimated RMS error of 0.001 kcal/mol(A), for instance. Specifically, for an assignment order of 2, a mesh spacing of 0.1A is required; for an assignment order of 3, a mesh spacing of 0.1A, for an assignment order of 4, a mesh spacing of 0.1A, and, finally, for an assignment order of 5, a mesh spacing of 0.1A. It is estimated that with an assignment order of 4, a mesh spacing of 0.001A would be required to obtain that level of estimated error. However, the program encountered too many errors or segmentation faults due to memory allocation for mesh spacings below 0.05A where the power law equation fit reasonably well.

Figure 2. The Potential Energy per Molecule is Sensitive to the Mesh Spacing.

Figure 2 shows how potential energy per molecule varied by mesh spacing. Figure 3 presents the same data as above, but the x-axis is now the total estimated RMS error. It is very sensitive to the mesh model used and the length of the simulation run is important.

Figure 3. Potential Energy per Molecule is Largely Independent of Estimated Total RMS Error

Another interesting property of water especially in the liquid state, is how far apart, on average the various atoms are from each other. The radial distribution function (RDF) for the O-O distance was output and viewed over a wide range of mesh spacings and assignment orders. This property showed no dependence on these input parameters, even for obviously large mesh spacings. Since all graphs were indistinguishable, only the typical graph is shown.

Figure 4. Typical Radial Distribution Function

Radial Distribution Function vs Distance

Figure 5. Convergence of the Dielectric Constant

The dielectric constant is very sensitive to mesh spacing above 1Å. The dielectric constant converged to a value close to that expected for the TIP4P model, for mesh spacings below 1Å. That value is significantly less than the experimental value at that temperature.

Figure 6. Bovine Pancreatic Trypsin Inhibitor.

Figure 7. Timing was Dependent on Mesh Spacing and Machine Type and Optimization.

Timing Dependencies

The original intent was to do more simulation runs on the Mac. There were no ready-made codes that were provided and the executable generated. Libraries for BLAS (Basic Linear Algebra System) and LINPACK (Linear Algebra Package) as well as FFTW3 or the Apple Fourier Transform in the West, version three, had to be obtained and compiled. The Apple Fourier transform had high estimated LINPACK, BLAS, vector, and FFT welfare, and the Apple Fourier transform was available via FENK Commander but the Apple version of the FFT/IDF is not available via the Free Software Foundation.

The TIP4P potential model for water, radial distribution function were independent of mesh spacing and assignment order as was the average potential energy which depended on run length.

Figure 8. Time can be Saved due to Decreased Estimated Total RMS Error with Increased Assignment Order.

Conclusions
• Estimated total RMS error is dependent on mesh spacing with a power law relationship. Significantly different power laws apply for different association orders.
• In the TIP4P potential model for water, radial distribution function were independent of mesh spacing and assignment order as was the average potential energy which depended on run length.
• The dielectric constant was dependent on mesh spacing and required a coarseness of less than 1Å to handle the long-range potential. Additional savings in execution time can be realized by using the higher assignment orders with large mesh spacings.

Run Times vs RMS Error (Assignment Order=3)

Figure 8 below indicates just how substantial some of these savings can be.

References

Acknowledgements
Thanks to Keith G. Calkins (Department of Chemistry, University of Rochester, Summer 2006 RET Program), Keith teaches public high school at the Berrien County Math & Science Center at Andrews University for all the help and advice during this research experience.