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Abstract. A defining hypothesis of theoretical ecology during the past century has been
that population fluctuations might largely be explained by relatively low-dimensional, non-
linear ecological interactions, provided such interactions could be correctly identified and
modeled. The realization in recent decades that such nonlinear interactions might result in
chaos and other exotic dynamic behaviors has been exciting but tantalizing, in that attri-
buting the fluctuations of a particular real population to the complex dynamics of a particular
mathematical model has proved to be an elusive goal. We experimentally tested a model-
predicted sequence of transitions (bifurcations) in the dynamic behavior of a population
from stable equilibria to quasiperiodic and periodic cycles to chaos to three-cycles using
cultures of the flour beetle Tribolium. The predictions arose from a system of difference
equations (the LPA model) describing the nonlinear life-stage interactions, predominantly
cannibalism. We built a stochastic version of the model incorporating demographic vari-
ability and obtained conditional least-squares estimates for the model parameters. We gen-
erated 2000 ‘‘bootstrapped data sets’’ with a time-series bootstrap technique, and for each
set we reestimated the model parameters. The resulting 2000 bootstrapped parameter vectors
were used to obtain confidence intervals for the model parameters and estimated distri-
butions of the Liapunov exponents for the deterministic portion (the skeleton) of the model
as well as for the full stochastic model. Frequency distributions of estimated dynamic
behaviors of the skeleton at each experimental treatment were produced. For one treatment,
over 83% of the bootstrapped parameter estimates corresponded to chaotic attractors, and
the remainder of the estimates yielded high-period cycles. The low-dimensional skeleton
accounted for at least 90% of the variability in the population abundances and accurately
described the responses of populations to experimental demographic manipulations, in-
cluding treatments for which the predicted dynamic behavior was chaos. Demographic
stochasticity described the remaining noise quite well. We conclude that the fluctuations
of experimental flour beetle populations are explained largely by known nonlinear forces
involving cannibalistic-stage interactions. Claims of dynamic behavior such as periodic
cycles or chaos must be accompanied by a consideration of the reliability of the estimated
parameters and a realization that the population fluctuations are a blend of deterministic
forces and stochastic events.
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INTRODUCTION

Nonlinear theory in ecology can be summarized as
a broad hypothesis: that the fluctuation patterns of
abundances in many population systems are explained
largely by relatively low-dimensional nonlinear inter-
actions. Population fluctuations in this view are the
result of stable points, stable periodic and aperiodic
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cycles, chaos, stable and unstable manifolds of invari-
ant sets, and multiple attractors, with the addition of
some unexplained noise. Some recent applications of
nonlinear modeling in ecology have met with encour-
aging success, due in part to improved statistical meth-
ods and stochastic modeling approaches (Costantino et
al. 1995, 1997, 1998, Dennis et al. 1995, 1997, Ellner
and Turchin 1995, Begon et al. 1996, Stenseth et al.
1996, Higgens et al. 1997, Leirs et al. 1997, Bjornstad
et al. 1998, Cushing et al. 1998a, b, Finkenstadt et al.
1998, Dixon et al. 1999, Henson et al. 1999).

One particular aspect of nonlinear dynamic theory—
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chaos—provides an unusual and intuitively unexpected
prediction of population behavior: low-dimensional de-
terministic forces can cause apparently random fluc-
tuations in population abundances. It was therefore not
surprising that the recognition of chaotic dynamics in
ecological models (May 1974a, May and Oster 1976)
was followed immediately by the search for chaos in
existing population time-series data (Hassell et al.
1976). Although a few researchers did conduct field
studies to test chaotic predictions (see Tilman and Wed-
in 1991), the dominant focus over the next two decades
continued to be on historical data sets. Connecting non-
linear theory to observed population fluctuations
proved to be a formidable challenge (Schaffer 1984,
Olsen et al. 1988, Pool 1989a, b, Olsen and Schaffer
1990, Ellner 1991, Hastings et al. 1993, Grenfell et al.
1994). Indeed, the lack of data has limited progress.
While the search for chaos as an explanation of pop-
ulation time series continues, the inquiry has stimulated
new explanations of data, the development of new pro-
cedures for data analysis (Schaffer 1984, Olsen et al.
1988, Bartlett 1990, Hassell et al. 1991, Logan and
Hain 1991, Nychka et al. 1992, Turchin and Taylor
1992, Ascioti et al. 1993, Godfray and Grenfell 1993,
Turchin 1993, 1995, Chan and Tong 1994, Ellner and
Turchin 1995, Falck et al. 1995a, b, Desharnais et al.
1997, Perry et al. 1997), and a new phase of experi-
mental population research (Kareiva 1995, Godfray and
Hassell 1997, Rohani and Earn 1997, Cipra 1999, Ken-
dall et al. 1999, Zimmer 1999).

The complexity of the natural systems involved in
the historical data sets, along with the inherent diffi-
culties in confidently linking such systems with theory,
pointed to the need for controlled laboratory experi-
ments—experiments designed and analyzed with the
specific intention of testing the predictions of nonlinear
population theory. Although laboratory microcosms
are no substitute for field experiments, they are useful
for testing basic ecological concepts (Kareiva 1989,
Godfray and Blythe 1990, Begon et al. 1996, Ives et
al. 1996, Bjornstad et al. 1998, Finkenstadt et al. 1998,
Miramontes and Rohani 1998). In this paper we report
on experimental evidence of chaos and other complex
dynamic behaviors obtained in such a laboratory ex-
periment. A brief announcement of these results ap-
peared in Costantino et al. (1997); we now provide a
complete description of our experiment and data as well
as new, extended analyses. An overview of our research
effort on nonlinear dynamics is given by Cushing et
al. (1996, 1998a, 2001).

Nonlinear theory often predicts transitions in the
long-term dynamics of a population in response to
changing parameter values. For example, the familiar
one-dimensional, discrete-time logistic model forecasts
dynamical changes (bifurcations) from extinction to
equilibrium to two-, four-, eight-cycles, etc., to chaos
as the birthrate parameter is increased (May 1974a).
We view such a predicted sequence of transitions as a

hypothesis subject to experimental scrutiny in the lab-
oratory. The idea for a ‘‘transitions experiment’’ is
straightforward: manipulate biological parameters
(such as the birthrate) in order to document experi-
mentally the model-predicted transitions among dy-
namic states.

There is a demanding prerequisite for both positing
and testing a transitions hypothesis: the identification
of an adequate mathematical model. Our work began
with the derivation of a biologically based stage-struc-
tured model (the larva–pupa–adult or ‘‘LPA’’ model)
for the flour beetle Tribolium castaneum Herbst (Den-
nis et al. 1995). We applied this model to the data of
Desharnais and Costantino (1980) and, with diagnostic
analyses of time-series residuals, showed that the LPA
model did an excellent job of predicting responses to
the experimental perturbations in population stage
structure (Dennis et al. 1995). More recently, Benoı̂t
et al. (1998) conducted a set of manipulation experi-
ments using the species T. confusum that provided an
independent validation of the LPA model.

Following the documentation of the LPA model, we
conducted two long-term transitions experiments. In
the first transitions experiment, we manipulated the
adult mortality rates in beetle cultures and observed
transitional changes in the population dynamics cor-
responding to the bifurcations predicted by the math-
ematical model (Costantino et al. 1995, Dennis et al.
1997). Maximum-likelihood parameter estimates were
obtained, 95% confidence intervals were calculated
from profile likelihoods, and the variance–covariance
matrices for both the control and treatment replicates
were presented. The LPA model did not forecast cha-
otic attractors in this experiment, and none were ob-
served experimentally (Rohani and Miramontes 1996,
Dennis et al. 1997). The model-predicted transitions in
population dynamics from equilibria to periodic cycles
to aperiodic cycles were documented statistically in the
data (Costantino et al. 1995, Dennis et al. 1997).

In this paper we present the results of the second
transitions experiment, in which a model-predicted
route to chaos was forecast. Our initial report of chaos
(Costantino et al. 1997) was based on a point estimate
of a set of parameters. What kind of confidence state-
ment can be attached to such a report? Claims of chaos
or even stable-point equilibria or stable cycles are typ-
ically subject to estimation error (Dennis et al. 1995,
Falck et al. 1995a, b). However, it is difficult to produce
and interpret confidence statements about dynamic be-
havior. Some approaches that have been used are profile
likelihood methods (Dennis et al. 1995, Bailey et al.
1997), parametric bootstrapping methods (Dennis and
Taper 1994), and semiparametric bootstrapping meth-
ods (Falck et al. 1995a, b). Of these methods, the semi-
parametric bootstrapping approach is theoretically
more robust to misspecification of the noise distribution
in the time-series model.

Our objective here is to explore the robustness of
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the results of our second transitions experiment and to
ascertain confidence levels for estimates of dynamic
behavior. We begin by refitting the LPA model using
a noise structure based on demographic stochasticity
that describes the data more accurately than our orig-
inal environmental noise structure (Costantino et al.
1997). We calculate parameter estimates for the sto-
chastic model using the method of conditional least
squares (Klimko and Nelson 1978, Tong 1990, Dennis
et al. 1995). To calculate confidence intervals, we mod-
ify the semiparametric bootstrapping method used by
Falck et al. (1995a, b). The estimated deterministic
portion of the model is combined with a resampling of
the model residual vectors to generate 2000 ‘‘boot-
strapped data sets.’’ Model parameter vectors are es-
timated for each bootstrapped data set, and both de-
terministic and stochastic Liapunov exponents are com-
puted for each combination of the 2000 bootstrapped
parameter vectors and eight experimental treatments.
With the 2000 bootstrapped parameter vectors we ob-
tain frequency distributions of Liapunov exponents and
frequencies of attractor types predicted by the deter-
ministic portion of the model for each experimental
treatment. We show that the flour beetle populations
display an array of complex dynamic behaviors that
includes a strong influence of chaos. We discuss the
difference between the deterministic and the stochastic
Liapunov exponents, and conclude that the stochastic
Liapunov exponents probably should not be used as a
benchmark of chaos. We caution that claims of ‘‘dy-
namic behavior’’ such as periodic cycles and chaos
must be accompanied by a consideration of the reli-
ability of the estimated parameters and a realization
that the population fluctuations are a combination of
the influence of the underlying deterministic dynamics
as well as of stochastic events. We discuss the interplay
of stochastic and deterministic forces (Bartlett 1990,
Renshaw 1994), the meaning of chaos in a stochastic
system, and the importance of incorporating stochastic
forces along with studying and quantifying the influ-
ence of underlying deterministic forces in a population
model.

METHODS AND DATA

LPA model

Many species of Tribolium are cannibalistic (Park et
al. 1965), including the species Tribolium castaneum
(Herbst) used in this project. The LPA (larva–pupa–
adult) model is built on the assumption that the nonlinear
interactions among the life-cycle stages caused by can-
nibalism are the driving mechanisms of the dynamics
for this species. The LPA model is a system of three
difference equations that relate the numbers of animals
at time t to the number of animals at time t 2 1:

L 5 bA exp(2c L 2 c A ) (1)t t21 el t21 ea t21

P 5 L (1 2 m ) (2)t t21 l

A 5 P exp(2c A ) 1 A (1 2 m ). (3)t t21 pa t21 t21 a

In this model formulation (Dennis et al. 1995, 1997),
Lt is the number of feeding larvae (referred to as the
‘‘L-stage’’), Pt is the number of large larvae, non-feed-
ing larvae, pupae, and callow adults (called the ‘‘P-
stage’’), and At is the number of sexually mature adults
(‘‘A-stage animals’’) at time t. The unit of time is 2
wk and is, approximately, the average amount of time
spent in the feeding larval stage under our experimental
conditions. The unit of time is also approximately the
average duration of the P-stage. The quantity b is the
number of larval recruits per adult per unit of time in
the absence of cannibalism. The fractions ml and ma are
the larval (l) and adult (a) rates of mortality, respec-
tively, in one time unit. The exponential nonlinearities
account for the cannibalism of eggs (e) by both larvae
and adults and the cannibalism of pupae by adults. The
fractions exp(2celLt21) and exp(2cea At21) are the prob-
abilities that an egg is not eaten in the presence of Lt21

larvae and At21 adults, respectively, in one time unit.
The fraction exp(2cpa At21) is the survival probability
of a pupa (p) in the presence of At21 adults in one time
unit. Eqs. 1–3 represent the deterministic population
forces upon which we build our stochastic model.

Demographic variability

Different types of stochastic mechanisms produce
different patterns of variability. In particular, two broad
classes of stochastic mechanisms important to popu-
lations have been widely discussed: demographic sto-
chasticity and environmental stochasticity (May 1974b,
Shaffer 1981). In order to connect a deterministic pop-
ulation model with time-series data, the population
model has to be converted into a stochastic model (Den-
nis et al. 1995). The types of stochastic mechanisms
affecting the population therefore have to be carefully
considered and formulated.

‘‘Demographic stochasticity’’ is the variability in
population size caused by independent random contri-
butions of births, deaths, and migrations by individual
population members. Demographic stochasticity can be
modeled by taking each individual’s net contribution
to the population in a unit of time to be the outcome
of an independent, discrete random variable. A simple
example is survival: an individual contributes ‘‘0’’ to
the population in the next time unit with probability
m, where m is the probability of death during the time
unit, and ‘‘1’’ to the population with probability 1 2
m. If many individuals are members of a homogeneous
cohort, then demographic events can often be aggre-
gated analytically at the cohort level into a known prob-
ability distribution for cohort size at the next time unit.

For instance, suppose each member of a cohort of
nt21 individuals at time t 2 1 has the same unit-time
survival probability, 1 2 m. A deterministic model for
the number of survivors at time t is nt 5 nt21(1 2 m).
If each cohort member were instead subjected inde-
pendently to a simple, random survival process, the
cohort at time t would be a random variable, Nt, with
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a binomial(nt21, (1 2 m)) distribution. Note that the
binomial distribution for Nt is conditional on the at-
tained value, Nt21 5 nt21, of the previous cohort size.
The conditional mean of Nt is nt21(1 2 m) (the deter-
ministic expression), and the conditional variance of
Nt is nt21(1 2 m)m (that is, the conditional variance is
proportional to nt21).

We constructed a stochastic version of the LPA mod-
el containing demographic variability. In the stochastic
version, we used the binomial and Poisson distributions
to describe the aggregation of demographic events
within the life stages. The simplest case is the P-stage
model (Eq. 2). In the stochastic model, Pt is a random
variable. The distribution of Pt given Lt21 5 lt21 was
taken to have a binomial(lt21, (1 2 ml)) distribution.
The A-stage (Eq. 3) is the sum of two survival pro-
cesses: recruits from the P-stage, denoted Rt, and sur-
viving adults, denoted St. We assumed that Rt given
Pt21 5 pt21 and At21 5 at21 has a binomial(pt21,
exp(2cpaat21)) distribution; the P-stage survival prob-
ability is the nonlinear function of at21 from Eq. 3. Also,
St was assumed to have a binomial(at21, (1 2 ma)) dis-
tribution.

The L-stage is a compound process: a random num-
ber of potential recruits is produced (with conditional
mean bat21), and each potential recruit subsequently
undergoes a survival process in which the conditional
survival probability, exp(2cellt21 2 ceaat21), depends on
the system state variables lt21 and at21 (Eq. 1). We as-
sumed that the number of potential recruits has a Pois-
son(bat21) distribution (i.e., a Poisson distribution with
mean bat21), and that the number of subsequent sur-
vivors has a binomial distribution. An elementary prop-
erty is that if a random variable Y has a binomial(n, p)
distribution given N 5 n, and N has a Poisson(l) dis-
tribution, then the resulting distribution for Y is Pois-
son(pl) (Boswell et al. 1979). Thus, the conditional
distribution of Lt given Lt21 5 lt21 and At21 5 at21 be-
comes a Poisson distribution with mean
bat21exp(2cellt21 2 ceaat21).

Our stochastic demographic LPA model thus takes
the conditional one-time-step distributions of Lt, Pt, and
At to be independent, discrete probability distributions:

L ; Poisson(ba exp[2c l 2 c a ]) (4)t t21 el t21 ea t21

P ; binomial(l , (1 2 m )) (5)t t21 l

R ; binomial(p , exp[2c a ]) (6)t t21 pa t21

S ; binomial(a , [1 2 m ]) (7)t t21 a

A 5 R 1 S . (8)t t t

Here ‘‘;’’ means ‘‘is distributed as.’’
For most statistical inferences reported in this paper,

we undertook an additional modification of the sto-
chastic demographic LPA model (Eqs. 4–8). We trans-
formed the observations so that the stochastic demo-

graphic model would be approximated by a nonlinear
autoregressive (NLAR) model. An NLAR model has
the form

X 5 h(X ) 1 Et t21 t (9)

where Xt is a state variable at time t, the function h(·)
is the ‘‘skeleton’’ (underlying deterministic equation
for Xt; Tong 1990), Et is a normally distributed random
variable with mean zero and variance s2, and E1, E2,
. . . are uncorrelated. NLAR models have some ad-
vantages and conveniences for our analyses. First, pa-
rameter estimates retain a theoretical robustness to de-
partures of the data from distributional assumptions
(see Parameter estimation, below). Second, the nu-
merically intensive calculations and simulations that
we needed involve straightforward algorithms for least
squares and normal random-variable generation. Fi-
nally, NLAR model evaluation can be based on familiar
diagnostic methods using residuals (see Dennis et al.
1995).

The idea behind the NLAR approximation is to find
a transformation, Xt 5 g(Nt), where Nt is a state variable
in the original model, for which the distribution of Xt

given Xt21 5 xt21 is approximately normal with a con-
stant variance (that is, a variance that does not depend
on xt21). If a variable Nt has a Poisson distribution with
mean l, then a well-known result from statistics is that

has approximately a normal distribution withX 5 ÏNt t

a mean of and a constant variance that does notÏl
depend on the value of l (Rao 1973). Thus, the square-
root transformation stabilizes and normalizes the var-
iance for the L-stage variable (Eq. 4). Also, the bi-
nomial distributions in the P-stage and A-stage models
(Eqs. 5–8) are well approximated by Poisson distri-
butions (e.g., Rice 1995), and so the square-root trans-
formation approximately stabilizes and normalizes
those variables as well. Thus, a demographic NLAR
approximation for a variable Nt is built by transforming
the deterministic equation for Nt to the square-root
scale, producing the transformed map given by Xt 5
h(Xt21). Adding normal noise for stochasticity produces
the NLAR model (Eq. 9). The NLAR model, in con-
junction with the square-root transformation, can be
regarded as a general method of incorporating demo-
graphic stochasticity into a deterministic model. We
note that an NLAR process using a logarithmic instead
of a square-root transformation is a standard way of
incorporating environmental variability (Dennis and
Taper 1994, Dennis et al. 1995, Costantino et al. 1997).

The LPA model (Eqs. 1–3) has three state variables,
and the demographic NLAR approximation applied to
the LPA model produces a multivariate NLAR process.
In Eq. 9, Xt becomes a vector of transformed state var-
iables, h(·) becomes a vector-valued function, and Et

becomes a vector of noise variables. Applying the
square-root transformation to Eqs. 1–3, and adding
noise, yields the following for the stochastic demo-
graphic LPA model:
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ÏL 5 ÏbA exp(2c L 2 c A ) 1 E (10)t t21 el t21 ea t21 1 t

ÏP 5 ÏL (1 2 m ) 1 E (11)t t21 l 2 t

ÏA 5 ÏP exp(2c A ) 1 A (1 2 m ) 1 E . (12)t t21 pa t21 t21 a 3 t

The terms Et 5 (E1t, E2t, E3t)9 constitute a random noise
vector assumed to have a joint normal probability dis-
tribution with a mean vector of zeros and a diagonal
variance–covariance matrix denoted by S. The de-
mographic nature of the stochasticity would stipulate
that the noise variables are uncorrelated with each other
within a time unit (off-diagonal elements of the matrix
S are zero) as well as uncorrelated through time. The
deterministic skeleton of the model (Eqs. 1–3 trans-
formed) is obtained by setting S 5 0, or equivalently,
by letting E1t, E2t, and E3t equal zero.

As written, the demographic NLAR model with nor-
mal noise (Eqs. 10–12) can produce negative values
for the (transformed) state variables, because the nor-
mal noise variables have a nonzero chance of being
negative and of large magnitude. Such instances have
negligible probabilities under the model parameter val-
ues associated with our data. In the rare instances in
our simulations when noise produced a negative value
of a state variable, the state variable was set to zero.
Unlike the situation for the logarithmic transform under
environmental variability, zero values for state vari-
ables are used in the square-root transform under de-
mographic variability just like any other values and do
not require special handling.

For the data from the second transitions experiment
(Costantino et al. 1997), we compared the demographic
(square-root) and environmental (logarithmic) trans-
formations, as well as a third transformation involving
a weighted mixture of demographic and environmental
stochasticity. We estimated the parameters of the re-
sulting stochastic LPA models and conducted diag-
nostic analyses of the residuals (homoscedasticity, au-
tocorrelations, and normality of residuals). Our com-
parative diagnostic analyses, to be reported in a sep-
arate paper, suggested that the model for demographic
stochasticity is superior. This is not surprising. The
second transitions experiment produced time series
with many low (single-digit) values of state variables,
due to the experimental manipulations of the treatment
populations. Demographic variability is known to be
more important for low population sizes (see Simber-
loff 1988). Therefore, despite the fact that we used
environmental noise in our first report (Costantino et
al. 1997), the analyses in the present paper are based
on the stochastic demographic LPA model given by
Eqs. 10–12. However, the qualitative predictions of the
fitted models (cycles, chaos, etc.) for both formulations
were nearly identical.

The dominant Liapunov exponent

The dominant Liapunov exponent (LE) quantifies the
tendency of a deterministic model to be sensitive to

initial conditions. It is an index calculated for a tra-
jectory of a deterministic model. At each point of a
trajectory there is a maximum rate at which all nearby
trajectories can diverge from or converge to one an-
other. The LE is the average of these local maximum
rates taken over all points of the trajectory. Thus, in
this sense the LE of a trajectory can be thought of as
a long-run average rate of exponential divergence or
convergence of nearby trajectories. For almost all tra-
jectories converging to an attractor such as a stable
point, stable cycle, or strange attractor, the LEs of the
trajectories will be identical to the LE of the attractor
because the effects of the initial conditions on the av-
erages become washed out. The LE of an attractor is
defined as the LE of a dense trajectory on the attractor
(that is, a trajectory that comes arbitrarily close to ev-
ery point on the attractor). A nonchaotic trajectory such
as a periodic cycle can exist on a chaotic attractor, but
such a trajectory is not dense.

For a bounded trajectory that is not asymptotic to a
periodic cycle, a positive LE is an indication of a cha-
otic attractor (Alligood et al. 1997). If the LE is pos-
itive, tiny changes in initial conditions are magnified
on average along the trajectory. A negative LE indi-
cates that trajectories differing by tiny changes in initial
conditions tend on average to converge; such is the
case with a stable point equilibrium or a stable periodic
cycle. A stable invariant loop has an LE of zero: on
average along a trajectory tiny changes in initial con-
ditions are neither magnified nor diminished.

The LE for the trajectories of the LPA model (Eqs.
1–3) can be computed by iteration. Let Jt be the Ja-
cobian matrix of the LPA model evaluated at the values
Lt, Pt, and At, that is,

2c bA g 0 b(1 2 c A )g el t 1t ea t 1t
 

J 5 1 2 m 0 0 (13) t l 
0 g 2c P g 1 (1 2 m ) 2 t pa t 2 t a

where, for brevity, g1t 5 exp(2celLt 2 ceaAt) and g2t 5
exp(2cpaAt). Also, let lt be defined as a ‘‘geometric
mean’’ of the norm of the products of the Jacobian
matrices:

l 5 (1/t)ln\J J J · · · J J \.t t t21 t22 2 1 (14)

Here ‘‘\·\’’ denotes any matrix norm (we used the Eu-
clidean norm, , where mij is the ele-2\M\ 5 ÏS S mi j ij

ment in the ith row and jth column of a matrix M).
The LE can in principle be computed as

l 5 lim l (15)t
t→`

for any positive initial condition. This definition is
analogous to the eigenvalue for linear stability analysis;
here the linearization is ‘‘averaged’’ over the long-term
trajectory of the population as it visits points on the
attractor. If the attractor is a stable point equilibrium,
then the LE is identical to the logarithm (of the modulus
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of) the largest eigenvalue of Jt evaluated at the equi-
librium (the eigenvalue commonly used in stability
analysis of a discrete-time system; May 1974b).

The definition of the LE can be extended to the sto-
chastic model (Eqs. 10–12). In this case, the average
used to calculate the trajectory LE does not converge
to the LE averaged on a deterministic attractor. Rather,
the trajectory LE converges to the LE averaged over
the stationary probability distribution for the stochastic
population (Crutchfield et al. 1982, Kifer 1986,
McCaffrey et al. 1992, Ellner and Turchin 1995). How-
ever, one must be careful about the interpretation of
the ‘‘sensitivity to initial conditions’’ implied by a pos-
itive stochastic Liapunov exponent (SLE), since sto-
chastic models do not have chaotic attractors and two
independent stochastic processes will always drift apart
due to the random nature of their dynamics. A positive
SLE is an indication that a population spends a large
amount of time in a state space region where deter-
ministic trajectories would diverge. Such regions in-
clude not only strange attractors but also regions near
unstable equilibria and other repellors; in stochastic
models, such regions can be revisited often. Thus, the
SLE measures something different from the determin-
istic LE. We develop this point further in the Discus-
sion, below.

There are several practical problems with using Eq.
15 directly to compute l. The matrix product is nu-
merically unstable for large t, and, unfortunately, ex-
tremely large values of t are usually needed for con-
vergence. Care must be taken to minimize the accu-
mulation of numerical roundoff error. Finally, intelli-
gent decisions must be made about the criterion for
convergence, especially when t is large. In the Appen-
dix we describe our algorithm for overcoming these
difficulties.

Experimental data

The experiment, described below, was designed ex-
plicitly to test the predictions of the deterministic skel-
eton of the LPA model. Parameter estimates from an
earlier experiment (Costantino et al. 1995) predicted a
sequence of changes in dynamical behavior from equi-
libria to invariant loops and periodic cycles to chaos
to three cycles as the parameter cpa was increased from
0 to 1 with ma 5 0.96 (Dennis et al. 1997). In the current
study we test that prediction.

We experimentally set the adult mortality rate at ma

5 0.96 and manipulated the adult recruitment rate so
that it would equal Ptexp(2cpa At), with values of cpa

set at 0.00, 0.05, 0.10, 0.25, 0.35, 0.50, and 1.00. There
was also an unmanipulated control treatment. Twenty-
four cultures of the RR strain of the flour beetle Tri-
bolium castaneum were initiated with 250 L-stage in-
sects, 5 P-stage animals, and 100 A-stage sexually ma-
ture young adults. Three populations were randomly
assigned to each of the eight treatments. Each popu-
lation was maintained in a half-pint (237 mL) milk

bottle with 20 g of standard media and kept in a dark
incubator at 328C. Every 2 wk the L-, P-, and A-stages
were censused and returned to fresh media, and dead
adults were counted and removed. This procedure was
continued for 80 wk. Adult mortality was set by re-
moving or adding adults at the time of a census to make
the fraction of adults that died during the interval equal
to 0.96. Recruitment rates into the adult stage were
manipulated by removing or adding young adults at the
time of a census to make the number of new adult
recruits consistent with the treatment value of cpa. To
counter the possibility of genetic changes in life-his-
tory characteristics, at every other census the adults
returned to the population after the census were ob-
tained from separate stock cultures maintained under
standard laboratory conditions. Earlier analyses of this
experiment were presented by Costantino et al. (1997)
and Desharnais et al. (1997).

Parameter estimation

The method of conditional least squares (CLS) was
used for estimation of the parameters in the stochastic
demographic LPA model (Eqs. 10–12). CLS methods
relax many distributional assumptions about the noise
variables in the vector Et (Klimko and Nelson 1978,
Tong 1990). CLS estimates are consistent (converge to
the true parameters as sample size increases), even if
Et is non-normal and autocorrelated, provided the sto-
chastic model (Eq. 9) has a stationary distribution.

CLS estimates are based on the sum of squared dif-
ferences between the value of a variable observed at
time t and its expected (or one-step forecast) value,
given the observed state of the system at time t 2 1.
For fitting the LPA model to a single time series, there
are three such conditional sums of squares:

Q (b, c , c )1 el ea

q 2

5 Ïl 2 Ïba exp(2c l 2 c a ) (16)O 1 2t t21 el t21 ea t21
t51

Q (m )2 l

q 2

5 Ïp 2 Ïl (1 2 m ) (17)O 1 2t t21 l
t51

Q (c )3 pa

q 2

5 Ïa 2 Ïp exp(2c a ) 1 a (1 2 m ) .O 1 2t t21 pa t21 t21 a
t51

(18)

Here lt, pt, and at, t 5 0, 1, . . . , q are the observed
census counts for the three life stages. The conditional
sums of squares are constructed on the square-root
scale because that is the scale on which we assume
noise is additive (Eqs. 10–12). Parameter ma was es-
timated directly in the control cultures as a binomial
probability from the counts of dead adults and the num-
ber of adults at risk of mortality at each census interval.
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To estimate cpa in the control cultures, Eq. 18 was used
with the value of ma fixed at the binomial estimate. Eq.
18 was not used for the treatment cultures, because cpa

and ma were experimentally fixed in those cultures.
CLS estimates for one population minimize the con-

ditional sums of squares (Eqs. 16–18). Our data (see
Experimental data, above) consisted of 24 populations:
three populations in each of eight treatments, with each
population initiated at time t 5 0 and halted at time t
5 40. If Qijk is the conditional sum of squares for state
variable i in the jth treatment in the kth population,
then the total conditional sum of squares for the ith
state variable was calculated as

8 3

Q 5 Q . (19)O Oi i jk
j51 k51

Thus, just one set of CLS parameter estimates was
obtained for the whole experiment. Three separate nu-
merical minimizations are required, one for each Qi.
We found the Nelder-Mead simplex algorithm (Press
et al. 1992) convenient. Alternatively, the CLS esti-
mates can be obtained by minimizing Q1, Q2, and Q3

with a standard nonlinear regression package.
The noise variances (diagonal elements in the vari-

ance-covariance matrix S of Et, Eqs. 10–12) were es-
timated using the conditional residuals (Dennis et al.
1995). We estimated noise covariances as well, to check
the assumption under demographic variability that the
random departures from the model skeleton are un-
correlated (that is, the off-diagonal elements of S are
0). Let xt denote the vector of ob-[Ïl , Ïp , Ïa ]9t t t

served, transformed stage abundances in a population
at time t. Thus, x0, x1, x2, . . . is a time series of vector
observations arising from one of the experimental pop-
ulations. Also, let ĥ(xt21) denote the vector of functions
in the model skeleton (Eq. 9) evaluated at xt21 using the
CLS parameter estimates. Each population in the ex-
periment yielded a series of residual vectors defined as

ê 5 x 2 ĥ(x )t t t21 (20)

for t 5 1, 2, . . . , 40. The noise variances and covari-
ances for the three control populations were estimated
from the sum of squares and crossproducts matrix cal-
culated with the 120 residual vectors. A separate var-
iance–covariance matrix was estimated for the 21 treat-
ment populations, to allow for the possibility that the
adult manipulations might alter the stochastic vari-
ability in the L and P stages, particularly the variability
in L-stage recruitment. The control residual vectors
were 3 3 1; however, the treatment residual vectors
were 2 3 1 (L and P stages only) because the exper-
imental manipulations rendered the adult populations
deterministic.

The LE and SLE corresponding to each experimental
treatment are functions of LPA model parameters. Point
estimates of the LE for each treatment were obtained from

the deterministic model (Eqs. 1–3) evaluated at the CLS
parameter estimates of b, cel, cea, and ml, and relevant CLS
(control) or fixed (treatment) values of cpa and ma. Point
estimates of the SLE for each treatment were calculated
with the stochastic model (Eqs. 10–12), using the CLS
estimates of b, cel, cea, and ml, relevant values of cpa and
ma, and the estimates of the noise variances obtained from
the residuals of the fitted model.

We also calculated maximum-likelihood (ML) esti-
mates for the LPA parameters in the Poisson-binomial
model (Eqs. 4–8). The purpose was to compare the
CLS estimates from the NLAR approximation (Eqs.
10–12) with the ML estimates. With the Poisson-bi-
nomial model, the likelihood function for each state
variable is a product of one-step Poisson or binomial
probabilities. For illustration, we focus on the time se-
ries emerging from one population. The likelihood
function for the parameters in the L-stage model is

L (b, c , c )1 el ea

q

5 exp[ba exp(2c l 2 c a )]P t21 el t21 ea t21
t51

lt3 [ba exp(2c l 2 c a )] /(l !). (21)t21 el t21 ea t21 t

This is a product of Poisson probabilities for the values
lt (t 5 1 2, . . . ,q), with means as indicated by Eq. 4.
The likelihood functions for the parameters in the mod-
els for the other state variables are products of binomial
probabilities:

q lt21 p l 2pt t21 tL (m ) 5 (1 2 m ) (m ) (22)P2 l l l1 2pt51 t

q pt21 rtL (c ) 5 [exp(2c a )]P3 pa pa t211 2rt51 t

p 2rt21 t3 [1 2 exp(2c a )] (23)pa t21

q at21 s a 2st t21 tL (m ) 5 (1 2 m ) (m ) . (24)P4 a a a1 2st51 t

Here st is the number of adults surviving from time t
2 1 (at21 minus the number of dead adults counted at
time t), and rt 5 at 2 st. The ML estimates are the
values of the unknown parameters cel, cea, ml, and in
the control cultures cpa and ma, that jointly maximize
the likelihood functions. As with the CLS estimates,
all the time series from the experiment were combined
to obtain one set of ML parameter estimates. The actual
likelihood functions used were products of functions
like Eqs. 21–24 taken over all the experimental pop-
ulations. The ML estimates were calculated by nu-
merical maximization (Eqs. 22 and 24 also admit sim-
ple closed-form solutions for the ML estimates).

Model evaluation

In two previous studies we withheld at least half of
the data from the parameter estimation process and
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used the withheld data in model prediction/validation
analyses (Dennis et al. 1995, 1997). In the present study
we used all the data in estimation in order to concen-
trate all the available information into confidence state-
ments about dynamics. The analyses described here are
therefore to be interpreted as goodness-of-fit analyses.
Nonetheless, because the model has so few parameters,
the data are so abundant, the experimental manipula-
tions are so distinct, and the model-predicted responses
to those manipulations are so sharp, evidence that the
LPA model fits this experiment serves as a fairly severe
test of the model.

Our main criterion for evaluating goodness-of-fit was
R2. We calculated a generalized R2 statistic to quantify
the overall influence of the LPA model skeleton. For
state variable i in the jth experimental treatment, the
conditional sum of squares Q̂ij was calculated by using
the CLS parameter estimates in Eq. 16, 17, or 18. A
second conditional sum of squares, Ŝij, was calculated
using the sample mean of the (square-root transformed)
state variable values as the one-step predicted value.
For example, for the L-stage, using subscripts to denote
the kth population in the jth treatment,

3 40 2

Ŝ 5 Ïl 2 m (25)O O 1 21j jkt 1j
k51 t51

where

3 401
m 5 Ïl (26)O O1j jkt120 k51 t51

is the sample mean of the square-root transformed L-
stage abundances in the jth treatment. The generalized
R2 value for state variable i in the jth treatment was
then defined as

2 ˆ ˆR 5 1 2 (Q /S ).ij ij ij (27)

An overall R2 was calculated for the ith state variable as

8 8
2 ˆ ˆR 5 1 2 Q S . (28)O Oi i j i j1 2@1 2[ ]j51 j51

It will be noted that each treatment retains its own mean
in the overall R2 formula, rather than pooling obser-
vations across treatments to calculate a common mean.

The model was further evaluated using residual anal-
yses. If the skeleton captures the essential dynamical
behavior, the leftover variability on some appropriate
scale should be just noise. Additionally, the demo-
graphic scale we selected for the noise (as reflected
through Eqs. 10–12) should turn out to be an appro-
priate one. In order to examine these assumptions, the
residuals for each stage in each culture (Eq. 20) were
subjected to the following diagnostic procedures. First,
the first-order and second-order autocorrelations of the
residuals were calculated. Autocorrelation of residuals
indicates a relationship between successive prediction
errors, and thus might suggest a systematic lack of fit

between model and data. Second, the residuals were
screened in standard diagnostic plots, including normal
quantile–quantile plots, and tested for lack of fit to a
normal distribution using the Lin-Mudholkar statistic
(see Tong 1990). The Lin-Mudholkar statistic was de-
signed for power against asymmetrical alternatives (Lin
and Mudholkar 1980). Asymmetry is a main feature
that is visually detectable in normal quantile–quantile
plots; we report the Lin-Mudholkar statistic in this pa-
per to condense the information from many figures.
While CLS estimates are robust to autocorrelation and
departure from normality, the diagnostic screening
helps determine whether the demographic noise model
adequately portrays the stochastic variability in the sys-
tem.

Bootstrap confidence intervals

If the experiment could somehow be repeated, how
much variability in the results might be expected? If
the fitted LPA model is chaotic for a particular treat-
ment, would it reliably be chaotic again? We deemed
it crucial to obtain an estimate of how variable the
estimated dynamic behaviors might be under stochastic
repetitions of the experiment. This variability is some-
times termed ‘‘sampling variability,’’ though it must
be kept in mind that what is ‘‘sampled’’ here are re-
alizations of the stochastic population process.

We used a bootstrapping technique for time-series
models. A version of the technique was used by Falck
et al. (1995a, b); we incorporated a centering modifi-
cation, described below, that was recommended in the
statistics literature.

Recall that the residual vectors (Eq. 20) from the 24
populations were in two groups, control and treatment.
For each group of residual vectors, the sample mean
vector was calculated, and the resulting vector was sub-
tracted from each residual in the group. These centered
residuals were used in our bootstrapping procedure.
The centering is theoretically important because the
collection of centered residual vectors provides a sta-
tistically consistent estimate of the (possibly multivar-
iate) noise distribution (Leger et al. 1992). In our data,
the sample means of the residuals were near 0, and the
centering was of little consequence.

To construct a bootstrapped time series for a single
population, 40 residual vectors were sampled with re-
placement from the appropriate group (control or treat-
ment) of centered residuals. The bootstrapped time se-
ries was started at the actual initial value , andx* 5 x0 0

was constructed with the relationship

x* 5 ĥ(x* ) 1 ê*t t21 t (29)

where is the tth sampled residual vector, isê* ĥ(x* )t t21

the vector of functions in the model skeleton (Eq. 9)
evaluated using the CLS parameter estimates and rel-
evant values of cpa and ma. The resulting time series of
vectors, is a kind of simulated tra-x*, x*, x*, . . . , x* ,0 1 2 40

jectory of life stages (square-root scale) for a popu-
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TABLE 1. Conditional least squares (CLS) and maximum-
likelihood (ML) estimates of the LPA model parameters
and their 95% bootstrapped confidence intervals.

Param-
eter†

CLS
estimate

ML
estimate

95%
confidence interval

b
ml

ma†
cel

cea

cpa‡

10.45
0.2000
0.007629
0.01731
0.01310
0.004619

10.67
0.1955
0.007629
0.01647
0.01313
0.004135

(10.04, 10.77)
(0.1931, 0.2068)
(0.006769, 0.008489)
(0.01611, 0.01759)
(0.01285, 0.01340)
(0.004446, 0.004792)

† Definitions: b 5 number of larval recruits per adult per
unit time in the absence of cannibalism; ml 5 probability of
larval mortality in one unit time; ma 5 probability of adult
mortality in one unit time; cel 5 larva–egg cannibalism co-
efficient; cea 5 adult–egg cannibalism coefficient; cpa 5 adult–
pupa cannibalism coefficient.

‡ Control cultures only. Estimate and confidence interval
for ma was obtained directly from counts of dead adults. The
CLS estimates of the variances and covariances of the random
elements (matrix ) are: 5 1.621, 5 20.1336, 5Ŝ ŝ ŝ ŝ11 12 13

20.01339, 5 0.7375, 5 20.0009612, and 5ŝ ŝ ŝ22 23 33

0.01212 for the controls; and 5 2.332, 5 0.007097,ŝ ŝ11 12

5 0.2374, and 5 5 5 0 for the treatments,ŝ ŝ ŝ ŝ22 13 23 33

where adult mortality and recruitment was manipulated.

lation in a given treatment under the estimated model.
In this way, an entire bootstrapped data set of 24 pop-
ulations in the form of the original data was construct-
ed. The model was then refitted to the bootstrapped
data set, yielding a set of bootstrapped CLS parameter
estimates.

The process of generating a bootstrapped experiment
(using the original CLS estimates) and calculating boot-
strapped CLS estimates was repeated 2000 times, yielding
2000 sets of bootstrapped CLS parameter estimates. This
collection forms a statistically consistent estimate of the
multivariate sampling distribution of the CLS parameter
estimates. The collection thus provides confidence inter-
vals for parameters, or functions of parameters such as
LEs. For each LPA model parameter, we used the 2.5th
and 97.5th sample percentiles of the bootstrapped esti-
mates as a 95% confidence interval.

Additionally, the collection provides estimates of
how much variability there is in the types of dynamic
behaviors estimated for each treatment. For each of the
2000 bootstrapped parameter sets, the dynamic prop-
erties of the corresponding LPA model were ascer-
tained. First, the LEs and SLEs for each treatment were
calculated with each bootstrapped parameter set. Sec-
ond, if the LE was negative, the period of the attractor
for the LPA skeleton was determined. The result for
each treatment was a frequency count of different dy-
namic behaviors. At a given treatment, the proportion
of the bootstrapped parameter sets that yielded, for in-
stance, a two-cycle (i.e., a two-period cycle) is a valid
estimate of the probability that a parameter set drawn
from the CLS sampling distribution would produce a
two-cycle.

RESULTS

Parameter estimates

The CLS (conditional least squares) estimates and
95% bootstrapped confidence intervals for the param-
eters in the stochastic LPA model (Eqs. 10–12) are
given in Table 1. Since ma, the adult mortality proba-
bility, and cpa, the adult-pupa cannibalism coefficient,
were fixed in the manipulated treatments, the point es-
timates and confidence intervals for these two param-
eters were obtained from the data on the controls. The
confidence intervals indicate that the parameters are
estimated with good precision; the half-widths of the
confidence intervals ranged from around 2% to 11%
of the CLS point estimates (Table 1). Also listed in
Table 1 are the ML (maximum-likelihood) parameter
estimates obtained from the Poisson/binomial model
(Eqs. 4–8). The ML estimates were close to the CLS
point estimates (Table 1). The ML estimates of b, ml,
cel, and cea were well within the 95% CLS confidence
intervals. The least similar ML estimate, that of cpa in
the control cultures, differed from the CLS estimate by
only 10.5%. The binomial ML estimate for ma in the
control cultures was taken as fixed in the CLS esti-

mation routines, and so is identical in both columns.
Overall, the close similarity of the CLS and ML esti-
mates suggests that the NLAR (nonlinear autoregres-
sive) model (Eqs. 10–12) provides a good approxi-
mation to the Poisson/binomial model (Eqs. 4–8).

There was little or no correlation between the noise
fluctuations of the state variables. The estimated co-
variances (Table 1) translate into the following corre-
lations: r̂ 5 20.10, r̂ 5 20.096, and r̂ 5 20.01012 13 23

for the unmanipulated controls, and forr̂ 5 20.003012

the manipulated treatments; despite the large sample
sizes, none of these correlations are statistically dif-
ferent from 0. If the fluctuations were environmental
in origin, we might expect that the departures of model
and data would be related among the life stages (a good
time interval for the L stage, say, would be related to
whether or not the interval was good for the other stag-
es). The lack of such correlation suggests that the noise
is mostly demographic in nature.

The bootstrapped parameter sets provide additional in-
formation on the distributional properties of the parameter
estimates. The quantile–quantile plots of Fig. 1 compare
the observed quantiles of the standardized bootstrapped
parameters to those of the standard normal distribution.
The lack of departure from straight lines indicates that
the estimates are well described with normal probability
distributions. In Fig. 2 we show a scatterplot matrix of
the bootstrapped parameter vectors. The histograms along
the diagonal of the matrix also support the hypothesis
that the parameter estimates are normally distributed. The
lack of any strong correlations among the parameters, as
indicated by the scatterplots, suggests that the model is
not overparameterized. These results taken together sug-
gest that the data provided good information about the
model parameters.
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FIG. 1. Normal quantile–quantile plots of the (standard-
ized) bootstrap parameter estimates. Units on both axes are
standard deviations. A–E portray results for b, ml, cel, cea, and
cpa, respectively. See Table 1 for definitions of parameters.

Estimated dynamics

The deterministic skeleton of the model (Eqs. 1–3),
evaluated with the CLS point estimates, forecasts strik-
ing changes in dynamical behavior—from point equi-
libria, to cycles, to chaos—under our experimental con-
ditions. Recall that manipulation of the adult mortality
rate and adult recruitment rate provided the means of
experimentally controlling the values of the parameters
ma and cpa. The estimated LPA skeleton yielded an es-
timate of dynamical behavior at each treatment value
of cpa as well as an estimate of the LE (Table 2). A
bifurcation diagram was computed with the CLS es-
timates to show how the estimated attractor changes as
the parameter cpa changes (Fig. 3A). Fig. 3A and Table
2 together show the distinctive sequence of transitions
in the estimated attractor of the model skeleton that
occurs as the value of cpa is varied. The estimated bi-
furcation diagram (Fig. 3A) closely resembles the one
reported earlier for this experiment using environmen-
tal noise (Costantino et al. 1997: Fig. 1); in fact, all
the parameter estimates except for b̂ from the environ-
mental-noise analysis lie within the confidence inter-
vals reported here in Table 1.

For the control cultures, the estimated attractor is a
stable point equilibrium (Table 2). For the cpa 5 0.00
treatment, the estimated behavior is aperiodic cycling
on an invariant loop, which has an LE (Liapunov ex-
ponent) of 0 (Table 2, Fig. 3A). The loop actually con-
sists of two tiny separate loops in phase space, with
deterministic trajectories visiting each tiny loop in al-
ternating time steps, and the result is that the trajec-
tories resemble 2-period cycles. The estimated attrac-
tors for the cpa 5 0.05 and cpa 5 0.35 treatments are
chaotic; the corresponding estimated LEs are positive,
and the attractors are ‘‘strange.’’ The cpa 5 0.10 and
cpa 5 0.25 treatments are stable long-period cycles that
seem to occur in period-locked ‘‘windows’’ among
more complex regions of the bifurcation diagram. The
corresponding LEs are negative. The graph of the es-
timated LE as a function of cpa (Fig. 3B) shows great
variability in the LE for values of cpa below 0.48 (ap-
proximately). The cpa 5 0.50 treatment produces a sta-
ble 3-period cycle, while the cpa 5 1.00 treatment gives
a stable 6-period cycle. However the 6-cycle occurs
just after a period-doubling bifurcation of the 3-cycle,
and the 6-cycle trajectories resemble a 3-cycle in ap-
pearance. The LE estimates for cpa 5 0.50 and cpa 5
1.00 are negative.

The estimated SLEs (stochastic Liapunov exponents)
differed substantially from the LEs (Table 2). Only the
control and the cpa 5 1.00 treatments had negative
SLEs; all the rest of the treatments had positive SLEs.
The graph of the estimated SLE value as a function of
cpa (Fig. 3C) is positive over a large interval of cpa

values below 0.57 (approximately); by contrast the
graph of the estimated LE values is jagged, irregular,
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FIG. 2. Scatterplot matrix of the bootstrap parameter estimates. See Table 1 for definitions of parameters.

TABLE 2. Deterministic attractors and estimates (and 95% bootstrapped confidence intervals)
of deterministic and stochastic Liapunov exponents (LE).

Treatment† Attractor Deterministic LE Stochastic LE

Control
cpa 5 0.00
cpa 5 0.05
cpa 5 0.10

equilibrium
invariant loop
chaotic
26-cycle

20.046 (20.047, 20.045)
0.000 (20.036, 0.000)
0.029 (20.227, 0.029)

20.109 (20.115, 20.0004)

20.044 (20.045, 20.044)
0.009 (20.007, 0.014)
0.045 (20.042, 0.046)
0.060 (0.056, 0.062)

cpa 5 0.25
cpa 5 0.35
cpa 5 0.50
cpa 5 1.00

8-cycle
chaotic
3-cycle
6-cycle

20.076 (20.090, 20.071)
0.096 (20.066, 0.100)

20.089 (20.101, 20.080)
20.003 (20.025, 20.0003)

0.068 (0.066, 0.071)
0.053 (0.049, 0.055)
0.019 (0.013, 0.025)

20.075 (20.087, 20.063)

† The adult–pupa cannibalism coefficient is represented as cpa.

and has negative as well as positive portions in that
region (Fig. 3B).

The bootstrapped parameter estimates allow us to
gain an idea of how variable are the estimates of dy-
namic behavior. The claim, for instance, that the at-
tractor for cpa 5 0.10 is a 26-cycle (Table 2) is merely
a ‘‘point estimate,’’ that is, the claim relies on a point
estimate of the model parameters. In fact, the 26-cycle
is a narrow region of a complex bifurcation diagram
(Fig. 3A), and the bifurcation diagram itself changes
when model parameters change. If the point estimates

were changed to other values within their confidence
intervals (Table 2), the behavior of the skeleton at cpa

5 0.10 might be, say, a cycle with some other period.
Each of the 2000 bootstrapped parameter vectors

provided an estimated LE, an estimated SLE, and an
estimate of the dynamical behavior of the skeleton at-
tractor for every treatment. The 2.5 and 97.5 percentiles
of the 2000 bootstrapped LE and SLE values at each
treatment were used to form 95% confidence intervals
for the LE and SLE of that treatment (Table 2). The
control and cpa 5 0.10, 0.25, 0.50, and 1.00 treatments,
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FIG. 3. Transitions in predicted deterministic dynamics
for the point estimates of the parameters as reflected by (A)
the bifurcation diagram for total population size (L-stage 1
P-stage 1 A-stage [see Table 3 for definitions of stages]), (B)
deterministic Liapunov exponents (LE), and (C) stochastic
Liapunov exponents, for cpa values (adult–pupa cannibalism
coefficients) ranging from 0 to 1. Arrows indicate experi-
mentally fixed values of cpa.

had LE confidence intervals over values that were
strictly negative. However, for cpa 5 0.10, most of the
bootstrappped parameter vectors predicted high-period
cycles with weak stability and LEs negative but near
0; the 97.5 percentile was just below 0 (Table 2). Sim-
ilarly, for cpa 5 1.00, the 97.5 percentile was negative
but close to 0. The cpa 5 0.00 treatment had an LE
confidence interval with 0 included as the upper bound.
This reflects an area of parameter space in which most
parameter vectors yield stable cycles (LE , 0), but a
measurable proportion of vectors result in invariant
loops (LE 5 0).

The LE confidence intervals for the cpa 5 0.05 and

cpa 5 0.35 treatments include positive values. The LE
confidence interval for the cpa 5 0.35 treatment, in fact,
lies mostly in the positive range, with just a small por-
tion overlapping into negative values. Later in this pa-
per (see Bootstrapped attractors, below) we show that
the negative values correspond mostly to high-period
cycles of unusual periods (e.g., 19-cycles). Thus, we
confidently claim that the attractor for the cpa 5 0.35
treatment is either chaotic or nearly aperiodic in re-
lation to the length of our time series (40 time steps).
The cpa 5 0.05 treatment is odd in that the LE point
estimate is on the upper edge (to two decimal places)
of the confidence interval. We show below (see Boot-
strapped Liapunov exponents) how this stems from ex-
treme skewness of the sampling distribution of LE es-
timates for the cpa 5 0.05 treatment.

The confidence intervals for the SLEs were more
straightforward. Two of the treatments, the control and
the cpa 5 1.00 treatments, had SLE confidence intervals
that were strictly negative. Five of the treatments, cpa

5 0.05, 0.10, 0.25, 0.35, and 0.50, had SLE confidence
intervals over strictly positive values. The cpa 5 0.00
treatment had an SLE confidence interval that included
positive and negative portions. While one can debate
about whatever property it is that SLE measures, es-
timating the SLE appears more stable than estimating
the LE. We show below (see Bootstrapped Liapunov
exponents) that the sampling distributions of the SLE
estimates for all the treatments are fairly well behaved.

Bootstrapped bifurcation diagrams

The variability of the estimates of attractor behavior
and deterministic LEs can be better understood by graph-
ically exploring parameter space. The joint confidence
intervals for the parameters can be regarded as a (hy-
per)rectangular region of parameter space, within which
any parameter vector is plausible under the experimental
evidence. (While the region is not strictly a joint 95%
confidence region, the parameter estimates are nearly in-
dependent (see Fig. 2), and so the region forms an ap-
proximate (conservative) 95% confidence region.) The
region generously indicates how much variability might
be expected under repeated sampling. A fascinating pic-
ture of the variability in the estimates of the skeleton
attractor resulted from plotting the cpa bifurcation diagram
for different parameter vectors in the region.

In Fig. 4 the cpa bifurcation diagram is plotted for
nine combinations of b and cel values, with the other
parameters held fixed at the CLS estimates. The three
rows represent respectively the upper 95% confidence
limit, the CLS estimate, and the lower 95% confidence
limit, of the parameter b. The columns represent the
same limits for the parameter cel. The center diagram
of Fig. 4 is, for reference, the CLS point estimate of
the bifurcation diagram (as in Fig. 3). There is a strong
qualitative similarity in the nine diagrams. For values
of cpa less than ;0.5 the diagrams show a region of
complex behavior, with a large window of periodic
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FIG. 4. Bifurcation diagrams for total population size (L-stage 1 P-stage 1 A-stage) plotted for all the combinations of
the upper and lower 95% confidence limits of parameters b (the number of larval recruits per adult per unit time in the
absence of cannibalism) and cel (larva–egg cannibalism coefficient) for cpa values (adult–pupa cannibalism coefficients) ranging
from 0 to 1.

behavior centered at approximately cpa 5 0.2. At a value
of cpa just under 0.5, the complex behavior gives way
abruptly to an extended region of stable 3-cycles. At
particular values of cpa, though, there is considerable
local variation in the diagrams. For instance, at cpa 5
1.00, one of our treatment values, the lower row of
diagrams (lower value of b) indicates that the attractor
is estimated to be a 3-cycle, while in the upper two
rows (increasing values of b), the estimated attractor
has locally bifurcated into a 6-cycle. Similarly, around
the treatment values of cpa 5 0.05 and 0.10 the bifur-
cation diagram is locally wispy; the dynamics of the
attractors vary between cycles and chaos in intricate
lacelike patterns.

The cpa 5 0.35 treatment lies within the dark, complex
behavior region in all nine bifurcation diagrams (Fig. 4).
The strange complexities of the attractors are revealed by
zooming in for a close-up view. In Fig. 5 the interval
from cpa 5 0.34 to 0.36 in the nine bifurcation diagrams
is magnified. Between dark areas of aperiodic chaotic
behavior, thin windows appear in which stable, high-pe-
riod cycles undergo period-doubling bifurcations. Note
the considerable variation in the locations of the windows.
Similar features would be revealed, fractal-like, upon fur-

ther magnification. By changing a parameter value a small
amount in such regions, the behavior of the attractor can
change considerably, from stable cycles to chaos, or the
reverse. The parameter values giving rise to periodic be-
havior (LE , 0) in such regions are sets of positive mea-
sure (they have positive volume in parameter space), as
are the parameter values giving rise to chaotic attractors
(LE . 0).

Bootstrapped Liapunov exponents

Histograms of the bootstrapped LE values show how
variability in parameter estimates becomes propagated
into the LE estimates (Fig. 6). The bootstrapped LE
values for the control treatment form a conventional
bell-shaped histogram. The LE values represent esti-
mated local stability strengths of the stable point equi-
librium of the skeleton. The LE histograms for the cpa

5 0.25 and 0.5 treatments are also reasonably bell
shaped. The LE values for these treatments represent
the estimated local stability strengths of the cyclic at-
tractors. The cpa 5 0.25 histogram actually extends into
the region of positive LE values; 6 out of 2000 boot-
strapped LEs were positive (not visible in the resolution
of Fig. 6). The LE histograms for the other treatments
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FIG. 5. Bifurcation diagrams plotted for all the combinations of the upper and lower 95% confidence limits of parameters
b and cel for cpa values ranging from 0.34 to 0.36 (i.e., a close-up view of a portion of Fig. 4).

are highly skewed and peculiar (Fig. 6). For the cpa 5
0.00 treatment, most of the bootstrapped LE values are
negative, but there is a spike of frequency at 0. The
sampling distribution of the LE estimates here is ap-
parently a mixed discrete and continuous distribution,
with the positive probability at 0 giving the proportion
of times the dynamic behavior is estimated to be ape-
riodic cycling on an invariant loop. The cpa 5 0.10
treatment has a left-skewed, ramp-shaped histogram of
LE values in the negative region, with a visible little
tail extending into the positive region (38 out of 2000
bootstrapped LEs were positive). The cpa 5 1.00 treat-
ment has a left-skewed, J-shaped histogram of LE val-
ues. The LE values for cpa 5 1.00 were all strictly
negative, though the histogram peak is near 0: the es-
timated cycles are weakly stable.

Though the LE histograms for the cpa 5 0.05 and
0.35 treatments have negative portions, they extend
considerably into the positive region (Fig. 6). For the
cpa 5 0.05 treatment, the skeleton attractor is highly
variable in this region of parameter space (recall Fig.
4). A variety of stable cycles (1218 out of 2000), as
well as chaos (782 out of 2000), are plausible behaviors
estimated for the attractor, according to the boot-
strapped LE values for cpa 5 0.05 (Fig. 6). The bulk
(1670 out of 2000) of the bootstrapped LE values for
the cpa 5 0.35 treatment are positive (Fig. 6). The re-

maining negative portion of the LE values for that treat-
ment correspond to small windows of high-period sta-
ble cycles in an otherwise complex bifurcation diagram
(recall Fig. 5).

The histograms for the bootstrapped SLE values
were bell shaped for all the treatments (Fig. 7). The
control and cpa 5 1.00 treatments had SLE histograms
that were unambiguously within the negative region.
The cpa 5 0.05, 0.10, 0.25, 0.35, and 0.5 treatments
had SLE histograms that were unambiguously positive.
The cpa 5 0.00 treatment had an SLE histogram that
straddled 0. The normal-like shape of the histograms
suggests that the SLE is a stable function of the model
parameters for which the conventional asymptotic nor-
mality theory of maximum-likelihood estimates might
apply (e.g., Lehmann 1983). We remark that the cal-
culation of the bootstrapped SLEs for these histograms
with appropriate numerical precision and safeguards
(see Appendix) required weeks of running time on a
contemporary Pentium computer.

Bootstrapped attractors

The 2000 bootstrapped parameter sets provided, for
each treatment, 2000 estimated attractors. We sum-
marized the frequencies of different dynamical behav-
iors of those attractors in a series of pie diagrams (Fig.
8). The control and cpa 5 0.50 treatments each showed
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FIG. 6. Histograms of the 2000 bootstrap estimates of the deterministic Liapunov exponents (LE) for each experimental
treatment. Not visible on the cpa 5 0.25 histogram are six positive LEs.

entirely one type of behavior: stable point equilibrium
for the control, and stable 3-cycles for the cpa 5 0.50
treatment. The cpa 5 0.25 treatment displayed stable 8-
cycles nearly entirely, with a tiny portion (0.3%) of the
attractors being chaotic. These three treatments had
ordinary bell-shaped histograms of bootstrapped LE
values (recall Fig. 6). The cpa 5 1.00 treatment was
split roughly evenly between estimates of 3-cycles and
6-cycles (Fig. 8); the basic uncertainty arises because
the value cpa 5 1.00 lies near a point where a 3-cycle
bifurcates (recall Fig. 4).

Combinations of more complex behaviors were es-
timated for the cpa 5 0.00, 0.05, 0.10, and 0.35 treat-
ments. At cpa 5 0.00, the spike of bootstrapped LE
values at 0 in the histogram (Fig. 6) corresponds to the

invariant loops (27%) indicated in the pie diagram (Fig.
8), while the negative LE values for that treatment (Fig.
6) were all stable 2-cycles (Fig. 8). Recall that the
invariant loops in the ‘‘point estimate’’ of the attractor
consisted of two tiny separate loops, producing trajec-
tories resembling 2-cycles. For the cpa 5 0.05 treatment,
39.1% of the bootstrapped parameter sets gave chaotic
attractors, and the remaining sets produced unusual sta-
ble cycles (Fig. 8). The cpa 5 0.10 treatment showed
mostly stable cycles of unusual periods (e.g., 13-cy-
cles). The cpa 5 0.35 treatment is our showcase for
chaos. For that treatment, 83.5% of the bootstrapped
parameter sets produced chaotic attractors, 7.1% pro-
duced stable 19-cycles, and the rest produced other
stable cycles of higher periods (Fig. 8). In the unlikely
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FIG. 7. Histograms of the 2000 bootstrap estimates of the stochastic Liapunov exponents (SLEs) for each experimental
treatment.

possibility that the behavior of the cpa 5 0.35 treatment
is a stable cycle, it would probably have a high period
relative to the length of the time series (q 5 40) and
occur in a small periodic window of parameter space
within a larger region of chaos (Fig. 5).

Model evaluation

The generalized R2 values for the experimental pop-
ulations were very high (Table 3). The L-stage (feeding
larvae) R2 values were generally lower than those for
the P-stage (pupae and near pupae). While three of the
L-stage R2 values were between 0.4 and 0.5, twenty of
them were above 0.75, and twelve were above 0.9. For
the P-stage, only two R2 values were below 0.9; both
were for control populations. The lowest R2 value for
the P-stage in all of the treatment populations was 0.96

(cpa 5 0.00, replicate 15). Many treatment R2 values
for the P-stage were above 0.99. The greater variability
of the L-stage is easy to interpret in that recruits arise
from the intrinsically variable processes of egg-laying
and egg survival. P-stage recruits, by contrast, arise
through a simpler survival process (see Eq. 2). We did
not report R2 values for the A-stage (sexually mature
adults) in the treatment cultures because the experi-
mental manipulations render the treatment A-stage
populations essentially deterministic. Note that the
control populations have L-stages and P-stages that are
more variable (lower R2 values, on average) than those
in the treatments; the additional variability stems from
the unmanipulated adults in the controls.

Residual diagnostics indicate that the stochastic por-
tion of the stochastic LPA model (Eqs. 10–12) is a
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FIG. 8. Pie charts showing the frequency of predicted de-
terministic attractors at each treatment for the 2000 bootstrap
parameter estimates.

TABLE 3. Fitted R2 values for the life stages for each rep-
licate.

Treatment Replicate

Fitted R2

L-stage P-stage

Control 4
11
24

0.611
0.456
0.776

0.907
0.859
0.867

cpa 5 0.00 5
12
15

0.461
0.776
0.402

0.965
0.972
0.962

cpa 5 0.05 1
7

20

0.895
0.905
0.875

0.984
0.985
0.990

cpa 5 0.10 6
10
16

0.870
0.873
0.782

0.983
0.990
0.985

cpa 5 0.25 8
17
21

0.892
0.923
0.952

0.991
0.983
0.994

cpa 5 0.35 2
13
22

0.928
0.962
0.996

0.980
0.995
0.997

cpa 5 0.50 9
14
19

0.912
0.959
0.938

0.991
0.995
0.993

cpa 5 1.00 3
18
23

0.937
0.948
0.938

0.998
0.990
0.993

Overall 0.899 0.985

Notes: Life-cycle stages for Tribolium: ‘‘L-stage’’ means
feeding larvae; ‘‘P-stage’’ includes large larvae, non-feeding
larvae, pupae, and callow adults; and ‘‘A-stage’’ refers to
sexually mature adults. The R2 values for the A-stage in the
control replicates are 0.996, 0.995, and 0.995 for replicates
4, 11, and 24, respectively, and the overall value in the con-
trols is 0.996.

good representation of the noise in the data (Table 4).
Significant first-order autocorrelation was detected in
just 5 (10%) of the 51 time series for which there were
residuals (L-, P-, and A-stages for 3 control popula-
tions, L- and P-stages for 21 treatment populations).
Significant second-order autocorrelation was detected
in just 7 (14%) of the time series; departure from a
normal distribution was detected in 17 (33%) of the
time series. These results are similar to results for 36
time series of this flour beetle strain (RR) reported for
the first transitions experiment (3% first-order auto-
correlated, 6% second-order autocorrelated, 33% non-
normal; Dennis et al. 1997). That two thirds of the
residual time series would fail to show evidence of
departure from normality is remarkable, given that the
series are long enough (q 5 40) for the normality test
to have reasonable power (Lin and Mudholkar 1980).
Various residual diagnostic plots, not reported here for
space reasons, also showed excellent patterns (stable
variances, normality). Note that the inferences we have
made about parameters, dynamics, LE values, etc., are
based on CLS estimation that makes no particular as-
sumptions about the distributional form of the noise.
The diagnostic tests and plots mainly suggest there are
no major systematic or symptomatic patterns in the

departures of model and data, allowing us to have great-
er confidence in the inferences made with the model.

That the estimated model skeleton accounts for a
high degree of variability in the populations can be
seen in time-series plots (Figs. 9 and 10). In Fig. 9,
the L-, P-, and A-stage abundances are plotted for one
representative population from the control and cpa 5
0.00, 0.05, and 0.10 treatments, along with the one-
time-step forecasts of the fitted model. Fig. 10 gives
the same plots for the cpa 5 0.25, 0.35, 0.50, and 1.00
treatments. The patterns of changes in dynamics and
variability from treatment to treatment are captured
well by the model, from the stable point equilibrium
of the control, to the irregular behavior of cpa 5 0.35,
to the strong periodic signals in the cpa 5 0.50 and 1.00
treatments. Occasionally the cyclic oscillations seem-
ingly damp to a point equilibrium (for example, from
t 5 8 to t 5 16 in the cpa 5 0.10 treatment, and from
t 5 8 to 19 in the cpa 5 1.00 treatment); the model in
fact predicts such behavior in the form of transient ‘‘fly-
bys’’ of an unstable equilibrium lying on a stable man-
ifold (Cushing et al. 1998b).

Phase-space plots and stochastic simulations

The agreement of model and data can be visualized
better in phase space. In the left columns of Fig. 11
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TABLE 4. Residual analyses for each replicate. First-order ( ) and second-order ( ) sampler̂ r̂1 2

autocorrelations and Lin-Mudholkar (z) test statistic for normality are reported.

Treatment
Repli-

cate no.

L-stage

r̂1 r̂2 z

P-stage

r̂1 r̂2 z

Control† 4
11
24

0.47
0.51
0.66

0.27
0.43
0.43

1.40
1.33
3.08

20.09
0.20

20.07

0.15
20.09

0.22

20.96
2.14
1.81

cpa 5 0.00 5
12
15

0.24
20.29

0.36

0.04
0.19

20.12

2.24
1.72
2.78

0.15
20.08

0.03

20.14
0.16
0.23

20.19
20.17
20.76

cpa 5 0.05 1
7

20

0.11
20.12
20.24

0.35
0.26
0.20

21.82
20.13

1.82

20.19
20.06

0.42

0.06
0.07
0.45

0.53
1.26
0.07

cpa 5 0.10 6
10
16

20.23
20.24
20.17

0.29
0.41
0.00

1.09
20.15
21.16

20.06
0.03
0.08

20.33
0.14
0.15

0.69
20.28

3.09
cpa 5 0.25 8

17
21

0.02
20.16

0.09

20.24
0.31

20.05

22.48
22.12

2.51

20.17
0.08

20.12

0.04
0.04

20.02

21.97
3.53

20.65
cpa 5 0.35 2

13
22

20.03
0.01

20.04

0.29
0.11
0.19

21.12
0.00
0.68

20.05
20.00

0.13

20.03
20.20
20.16

23.60
21.13
22.57

cpa 5 0.50 9
14
19

20.18
0.16

20.12

20.06
20.14

0.09

22.45
0.28

20.58

20.12
20.12
20.06

20.05
0.14

20.09

2.16
1.45

21.40
cpa 5 1.00 3

18
23

0.10
0.20
0.11

0.16
0.27
0.19

0.49
20.64

0.87

0.03
20.02
20.09

0.05
20.11
20.03

22.24
1.66
2.17

Notes: There is significant (0.05 level of probability) jth-order autocorrelation if exceedszr̂ zj
0.31. There is significant (0.05 level of probability) departure from normality if zzz exceeds
1.96. The diagnostic statistics for the A-stage residuals of the control treatments are: r̂ 51

, , z 5 22.10 for replicate 4; , , z 5 1.18 for replicate 11;0.26 r̂ 5 0.23 r̂ 5 20.00 r̂ 5 20.022 1 2

and , , z 5 2.11 for replicate 24.r̂ 5 0.14 r̂ 5 0.011 2

(A, C, E, G) and Fig. 12 (A, C, E, G), we plotted the
data triples [lt, pt, at] from each treatment in phase space
after removing initial transient observations. Open cir-
cles are the data points; the dark circles or lines rep-
resent the estimated stable attractor for that treatment.
The model attractors capture the transitions in dynamic
behavior of the data from treatment to treatment ex-
tremely well. Note the tight cloud of points around the
stable point equilibrium for the control treatment (Fig.
11A), the two clouds of points around the small in-
variant loops for the cpa 5 0.00 treatment (Fig. 11C),
the irregular, triangular-shaped clouds of data points
that accompany the three-pointed cyclic or chaotic at-
tractor of the cpa 5 0.05, 0.10, 0.25, and 0.35 treatments
(Figs. 11E and G, 12A and C), and the clustering of
points around the 3-cycle and 6-cycle of the cpa 5 0.50
and 1.00 treatments (Fig. 12E and G).

Clearly the data in Figs. 11 (A, C, E, G) and 12 (A,
C, E, G) are influenced strongly by the deterministic
forces present in the model. Also, there are clear de-
partures of data from model. Does the variability pre-
dicted by the stochastic model resemble the variability
in the data? The right columns of Figs. 11 and 12 (B,
D, F, H) depict stochastic triples simulated using the
estimated stochastic model (Eqs. 10–12, with param-
eter values given by Table 1), with initial transients
removed. For the purpose of the simulations, the noise
vector Et was assumed to have a multivariate normal

distribution (recall that multivariate normality was not
assumed for the estimation methods). The simulations
are thus shown side by side with the corresponding
data for each treatment. The resemblance of the left
and right plots for each treatment is striking. The sto-
chastic model produced cloud patterns of observations
around the estimated attractors that can hardly be dis-
tinguished visually from the data. In ecology, such con-
cordance of model and data across experimental ma-
nipulations is rare.

DISCUSSION

Asymptotic dynamics and stochasticity

Asymptotic dynamics (‘‘final states’’) such as equi-
libria, cycles, and chaos are deterministic mathematical
notions defined in terms of equations and arbitrarily
large temporal extents. Physical systems, being tem-
porally finite, do not have asymptotic properties. Even
so, these precise mathematical notions are useful for
describing and understanding physical systems. (In-
deed, the mathematical notions are perhaps nothing
more than idealized abstractions gleaned from the ob-
servation of physical systems.) While a physical system
cannot be at equilibrium, or on a limit cycle, or chaotic
in a strict mathematical sense, these model concepts
are useful as approximations to physical reality. If the
state of a physical system is well described by a de-



May 2001 295ESTIMATION OF COMPLEX DYNAMICS

FIG. 9. Time-series data (v) and one-step predictions from the fitted model (V) for representative cultures from four
experimental treatments: control, and cpa (adult–pupa cannibalism coefficient) 5 0.00, 0.05, and 0.10. The unit of time is
two weeks.

terministic model, investigators commonly ascribe the
mathematical dynamic of the model to the system.
However, in population systems the role of chaos and
other deterministic nonlinear dynamic behaviors, both
asymptotic and transient, must be understood in the
context of stochasticity.

Ecological populations are stochastic. Observed time
series, from completely censused laboratory popula-
tions cultured under near-constant environmental con-

ditions (Costantino and Desharnais 1981, Dennis and
Costantino 1988) to extensive field surveys of popu-
lation abundances (Woiwod and Hanski 1992), are
characterized by pervasive, unexplained noise. In an
analysis of 59 laboratory and field time-series data sets,
Ellner and Turchin (1995) found that low-dimensional
deterministic dynamics seldom accounted for more
than half of the total variability in the data. While in-
corporation of weather covariates in time series (Roth-
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FIG. 10. Time-series data (v) and one-step predictions from the fitted model (V) for representative cultures from four
experimental treatments: cpa 5 0.25, 0.35, 0.50, and 1.00. The unit time is two weeks.

ery et al. 1997, Dennis and Otten 2000) will potentially
account for some of the unexplained variability in field
populations, population ecologists are a long way from
being able to rely on ‘‘laws’’ of population dynamics
in the form of differential or difference equations.

Noise in ecological systems has three major impacts
on attempts to build appropriate mathematical models
of population dynamics and to interpret population be-
havior in terms of model dynamic behavior. First, the
noise must be included as an integral part of the model.
Second, model parameters, and the resulting model dy-

namics, are estimated with statistical uncertainty.
Third, the noise fundamentally alters the dynamic be-
haviors of the model. We discuss each of these impacts
in turn, with reference to our results.

1. Modeling the noise.—If mathematical population
models are to be built and tested as serious scientific
hypotheses, the models must somehow be connected
to data. Such connection implies that the noise must
be modeled, in order to construct an appropriate esti-
mating function for the model parameters (based on
likelihood or conditional sums of squares, for instance).
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FIG. 11. Phase-space plots for the data (V in A, C, E, G)
and stochastic model (V in B, D, F, H) for weeks 40–80
together with the predicted deterministic attractor (v or lines)
for four experimental treatments: control, and cpa 5 0.00,
0.05, and 0.10. The values from the stochastic model were
generated from simulations with the same initial conditions,
number of replicates, and length of time series as the exper-
imental data. The week 0–38 observations for the control and
cpa 5 0.05 and 0.10 treatments were discarded to focus at-
tention on the asymptotic attractors. The week 0–66 obser-
vations for the cpa 5 0.00 treatment were discarded since
simulations indicated that this treatment exhibits longer tran-
sients.

The noise model component should be evaluated with
data, using statistical diagnostic procedures. There is
reason for encouragement; recent studies suggest that
constructing useful stochastic models is feasible for

various ecological systems. In at least some studies,
diagnostic analyses of fitted models revealed noise with
a simple probabilistic structure, such as a normal dis-
tribution (Dennis and Costantino 1988, Dennis et al.
1991, 1995, 1998, Kemp and Dennis 1993, Dennis and
Taper 1994).

In the present study, the departures of data from the
model skeleton were well described by a model of de-
mographic variability. We hypothesized that the sur-
vival of a cohort of flour beetles through a life stage
would resemble a simple binomial random process, and
that recruitment of small larvae would be similar to a
Poisson distribution. The binomial or Poisson-distri-
bution parameters were modeled as nonlinear functions
of the state variables in such a way that the mean trend
for the system predicted over one time unit was the
deterministic LPA model. The binomial and Poisson
distributions had the property that the stochastic var-
iability would appear as approximately normally dis-
tributed ‘‘noise’’ on the square-root scale. In the 24
experimental populations, the normal noise model pro-
vided overall an excellent description of the residual
variation in the populations after the nonlinear effects
predicted by the LPA model had been estimated and
accounted for in the time series.

2. Estimating the dynamics.—When models are con-
nected to data and parameters are appropriately esti-
mated, interpretations of dynamic population behavior
come with ‘‘confidence intervals.’’ In an earlier study,
using a different strain of flour beetle, we displayed a
joint parameter confidence region for unmanipulated
control populations that contained stable 2-cycles as
well as stable points (Dennis et al. 1995: Fig. 3). When
a confidence region contains chaos, the situation can
be far more complicated. Even though a point estimate
of deterministic model parameters corresponds to a
chaotic regime, a bewildering variety of other dynamic
states could be embedded in the parameter confidence
region. In fact, it was informative in the present study
to divide the entire estimated sampling distribution of
the parameter estimates into ‘‘confidence sets,’’ in
which a degree of confidence is associated with a par-
ticular type of dynamic behavior. For instance, we are
39% confident that the cpa 5 0.05 treatment has a skel-
eton with a chaotic attractor, 23% confident that the
attractor is a 5-cycle, and 38% confident that the at-
tractor is cyclic with some other period (Fig. 8).

Based on our stochastic model and estimation pro-
cedures, we are 83.5% confident that the cpa 5 0.35
treatment has an underlying chaotic attractor, and
16.5% confident that the attractor is an unusual high-
period cycle such as a 19-cycle (Fig. 8). The confidence
sets provide strong support for our claim that the fluc-
tuations of the cpa 5 0.35 treatment populations are
largely explained by complex nonlinear behavior aris-
ing from simple, known population forces.

3. Emergent dynamic behavior.—Noise combines
with deterministic forces to produce emergent dynamic
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FIG. 12. Phase-space plots for the data (V in A, C, E, G)
and stochastic model (V in B, D, F, H) for weeks 40–80
together with the predicted deterministic attractor (v or lines)
for four experimental treatments: cpa 5 0.25, 0.35, 0.50, and
1.00. The values from the stochastic model were generated
from simulations with the same initial conditions, number of
replicates, and length of time series as the experimental data.
The week 0–38 observations were discarded to focus atten-
tion on the asymptotic attractors.

behaviors. Indeed, the mathematical notions of stabil-
ity, periodicity, and chaos defined for deterministic sys-
tems do not strictly apply to stochastic systems. Instead
of a chaotic stochastic system, or a periodic stochastic
system, it is more appropriate to speak of the influence
of a chaotic or periodic skeleton on the stochastic sys-
tem. The skeleton and the noise together determine the

dynamics (Leirs et al. 1997); the skeleton merely in-
fluences the dynamics.

The NLAR (nonlinear autoregressive) model (Eq. 9)
can serve as a multivariate stochastic version of many
types of ecological population models (Dennis et al.
1995, 1998), under demographic (square-root scale) or
environmental (log scale) stochasticity. Such models
have emergent dynamic properties that must temper
discussions of nonlinear dynamics in ecology.

3a. The attractor of an NLAR model is a stationary
probability distribution.—The stationary distribution,
if it exists, gives the long-run proportion of time that
the system spends in a region of phase space as an
integral of the stationary probability density function
over that region. The population trajectories under Eq.
9 typically do not become confined to a reduced-di-
mension set, such as a point, cycle, or strange attractor.
Rather, all regions of phase space are eventually visited.
The stationary probability density function is typically
smooth, instead of fractal like the invariant measure of
a strange attractor, though the density might have many
modes.

The stationary distribution for the stochastic LPA
model (Eqs. 10–12) was estimated to undergo distinc-
tive changes in response to our experimental manip-
ulations of adult recruitment and mortality. The dis-
tributions under the different experimental treatments
were manifested in model simulations as clouds of
points around underlying deterministic attractors (Figs.
11 and 12). The resemblance of the model and data
clouds, in particular the degree of variability around
the attractors and the responses of the cloud patterns
to the treatments, was striking (Figs. 11 and 12). Most
of the probability in these stationary distributions was
concentrated near the underlying attractors, suggesting
that the attractors strongly influence the stochastic-
model dynamics. Identifying the best statistical meth-
ods for comparing these fitted, exotic multivariate dis-
tributions with data is an open question that we are
currently researching.

3b. Transient phenomena recur.—Noise continually
stirs stochastic systems, knocking trajectories away
from the attractors of the skeleton. Transient phenom-
ena, such as visitation to the neighborhood of an un-
stable equilibrium, eventually recur. Sometimes an un-
stable point (or other invariant sets such as an unstable
cycle or fractal set) resides on a reduced-dimensional
stable manifold, so that trajectories near the manifold
tend to move toward the unstable point before moving
away toward a stable attractor (Cushing et al. 1998b).
The effect is for trajectories in the stochastic system
to display occasional ‘‘fly-bys’’ of divergence regions
of phase space, followed by fresh transient returns to
the attracting region. As noted earlier (see Results:
Model evaluation), recurring fly-bys of an unstable
point equilibrium are evident in time series reported in
the present study (Fig. 10). Long-run time spent near
divergence regions is accounted for in the stationary
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distribution. This recurring divergence implies a sen-
sitivity to initial conditions of a kind fundamentally
different from deterministic chaos (see Rand and Wil-
son 1991).

3c. Noise can cause transitions between multiple de-
terministic final states.—Stochasticity, in conjunction
with the presence of unstable invariant separatrix sets
and the nature, location, and size of basins of attraction,
can ‘‘bump’’ model trajectories from one attracting de-
terministic state to another. For example, noise may
cause a cycle to shift phase (Henson et al. 1998) or, in
a regime with multiple deterministic attractors, may
cause an orbit to jump from one cyclic attractor to
another (Henson et al. 1999).

Influence of chaos on ecological populations

In a strict mathematical sense, populations cannot
be chaotic for three reasons. First, even if populations
were not stochastic, they are of finite temporal extent
and thus do not have asymptotic dynamics such as equi-
libria or chaos. Second, given that populations are sto-
chastic, the dynamics of their models must be estimated
with confidence intervals, in which may be embedded
dynamics other than chaos. Third, because of the in-
teractions of stochasticity and deterministic influences,
populations are not confined to a chaotic attractor so
long as even a little stochasticity is present.

Instead, a more realistic hypothesis for a particular
population might be that the population fluctuations are
strongly influenced by a skeleton with, say, a strange
attractor. Indeed, they might be strongly influenced by
an unstable chaotic set through recurring transient be-
havior near the set. If so, then useful understandings
and predictions might be accomplished with models
that combine deterministic and stochastic aspects, and
that is what we have demonstrated here.

Furthermore, an important take-home message of
nonlinear dynamics for ecologists is not chaos per se,
but rather that systems can undergo transitions among
different types of behaviors in response to changing
conditions, and that these transitions might be predicted
with suitable stochastic models. Our experiments were
designed around a specific sequence of transitions pre-
dicted by a promising biological model. A chaotic skel-
eton was predicted to be sandwiched between char-
acteristic cyclic or stable-point skeletons, like books
between bookends, along a range of values of a control
parameter. The model predicted that the skeletons were
influential enough that the transitions would be ob-
served in experimental populations in response to ma-
nipulations of the control parameter value. The overall
R2 values indicated that the fitted LPA skeleton ac-
counted for 89.9% of the L-stage (feeding larvae) var-
iability and 98.5% of the P-stage (between feeding lar-
vae and sexually mature adults; pupae) variability in
the experimental populations (Table 3). The data plot-
ted in phase space showed clear transitions in behavior

and closely matched the predicted cycles on either side
and the predicted strange attractor in the middle.

Are any of the populations in this experiment influ-
enced by chaotic dynamics? On the basis of the point
estimates of the Liapunov exponents (LEs) (see Table
2), the deterministic attractors for the cpa (i.e., the adult
pupa cannibalism coefficient) 5 0.05 and 0.35 treat-
ments are chaotic. There is additional supporting evi-
dence. Histograms of the bootstrap estimates of the LEs
revealed the occurrence of positive values for both
treatments (Fig. 6), with the frequencies of positive
values being 39.1% and 83.5% for the cpa 5 0.05 and
0.35 populations, respectively (Fig. 8). Bootstrapped
bifurcation diagrams placed both treatments in regions
of complex dynamic behavior interwoven with chaos
and high-period cycles (Fig. 4). The deterministic skel-
eton accounted for 92.5% of the variability in the
(transformed) L-stage abundances, and 98.9% of the
P-stage abundances, in the six cultures allotted to the
cpa 5 0.05 and 0.35 treatments, according to the gen-
eralized R2 value calculated for those populations. We
conclude that the cpa 5 0.05 and 0.35 populations are
strongly influenced by chaotic dynamics.

Sensitivity to initial conditions

Sensitivity to initial conditions is a hallmark of de-
terministic chaos. In a deterministic system, such sen-
sitivity is a straightforward concept, and is widely mea-
sured with the dominant LE. The LE is the early di-
vergence rate of two trajectories that differ infinitesi-
mally in initial conditions, averaged over the system
attractor (point, cycle, strange attractor, etc.). The av-
erage is taken with respect to the invariant measure of
the attractor. The deterministic attractor is generally a
set of greatly reduced dimension in phase space. Con-
ditions on the attractor (where the LE is calculated) do
not typify conditions elsewhere in phase space. The
estimated LEs of the LPA model skeleton were positive
at cpa 5 0.05 and 0.35 (Table 2, Fig. 3B), indicating
that for these cpa values the skeleton alone produces
chaotic behavior, that is, trajectories on the predicted
strange attractor have the property (on average) of sen-
sitivity to initial conditions.

Sensitivity to initial conditions must be measured in
some other fashion, however, for a stochastic system.
As is clear from both model simulations and data, sto-
chastic trajectories at cpa 5 0.05 and 0.35 do not spend
much time actually on the attractors, but do behave as
if influenced by the attractor (Figs. 11 and 12). Do such
trajectories, in their recurrent visitations of transient
areas of phase space, have the sensitivity property? It
depends on how that sensitivity is defined.

The definition embodied in the ‘‘stochastic LE’’
(SLE) averages the trajectory divergence rate over the
stationary distribution. The average can be calculated
from the ergodic property by taking a time average of
the divergence rate over a single long trajectory (see
Appendix, and also Ellner and Turchin 1995). This def-
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inition, proposed by Crutchfield et al. (1982) and stud-
ied and advocated by McCaffrey et al. (1992), would
seem a natural extension of the deterministic sensitivity
concept to stochastic systems. Indeed, the SLEs cal-
culated for cpa 5 0.05 and 0.35 (Table 2, Fig. 3C) in-
dicate that trajectories of the predicted stochastic model
for these cpa treatments have, on average, the sensitivity
property, so defined.

According to the full stochastic model, the cpa 5
0.00, 0.10, 0.25, and 0.50 treatments are also predicted
to have the sensitivity property; the SLEs are positive.
At first glance the situation might appear peculiar: the
skeleton of the model for each of these cpa values is
decidedly nonchaotic, while the full stochastic model
shows sensitivity to initial conditions. Is the noise
somehow causing sensitivity to initial conditions?

The explanation lies in the properties of the sto-
chastic NLAR model (Eq. 9). The stationary distri-
bution accounts for the long-run time spent in all por-
tions of phase space, including regions of phase space
where initially close trajectories governed by the skel-
eton tend to diverge. In some situations a significant
proportion of time can be spent by a stochastic system
in a divergence region; if such a system is allowed to
run for a long time and then stopped at random and
observed, chances are fair by the ergodic property that
the system will be in a divergence region. If a positive
SLE were taken as a definition of chaos, then noise
could ‘‘induce chaos’’ by continually knocking the sys-
tem into phase-space regions that are transient and lo-
cally diverging according to the skeleton.

In fact, it is possible to construct a stochastic logistic/
Ricker model in which the skeleton predicts a critically
damped, globally stable point equilibrium, yet the SLE
is positive (Desharnais et al. 1997). The noise in the
model frequently places the population at low abun-
dance levels, well below the stable point equilibrium
of the skeleton. Because zero is an unstable equilib-
rium, trajectories near it diverge (growing approxi-
mately exponentially toward the stable equilibrium
point). While such a system displays, on average, ‘‘sen-
sitivity to initial conditions,’’ it is not clear that pop-
ulation ecologists would want to label such a system
‘‘chaotic.’’ After all, noisy perturbation around a stable
equilibrium is a leading alternative hypothesis to chaos
concerning the nature of fluctuations in natural popu-
lations (Pool 1989a, b).

Thus, defining chaos in terms of a positive SLE con-
founds both stochasticity and complex nonlinear dy-
namics; it classifies noisy systems as chaotic as well
as systems under the influence of low-dimensional,
nonlinear forces. Instead, we find studying and quan-
tifying the influence of biologically based model skel-
etons useful for identifying the role of nonlinear dy-
namics in population ecology. All along, the mathe-
matical chaos theorists provocatively suggested that
population fluctuations might be largely deterministic,
possibly caused by simple but unidentified nonlinear

interactions (May and Oster 1976). In other words, it
was hypothesized that if some underlying deterministic
skeleton could be identified correctly, then the popu-
lation fluctuations might be substantially explained and
understood. Because of the presence of noise, ecolog-
ical populations cannot be strictly chaotic; however,
there remains the prospect that some ecological pop-
ulations can be strongly influenced by underlying de-
terministic forces.

We have demonstrated that experimental Tribolium
populations are strongly influenced by dynamics con-
tained within a simple nonlinear skeleton. The predic-
tions of the skeleton accounted for most of the vari-
ability of L-stage and P-stage numbers of 24 experi-
mental populations. Furthermore, the skeleton fore-
casted substantially different dynamics depending on
the experimental treatments, and these different dy-
namic transitions were displayed by the experimental
populations. For the treatments with parameter cpa ex-
perimentally set at 0.05 and 0.35, the estimated skel-
eton predicted chaotic dynamics. The skeleton account-
ed for most of the variability of L-stage and P-stage
abundances displayed by the three populations at the
cpa 5 0.05 and 0.35 treatments. The statistical patterns
in the leftover noise were well described by a model
of demographic stochastic forces.

CONCLUDING REMARKS

While there is no such thing as strict mathematical
chaos—or even equilibria or cycles—in biological pop-
ulations, ecologists can be encouraged that simple non-
linear models can help unlock substantial gains in un-
derstanding population systems. Keys to transforming
nonlinear models from scientific caricatures to testable
scientific hypotheses are: (a) incorporating the noise as
well as the signal in biologically based models, (b)
explicitly connecting models and data, (c) focusing on
statistics as well as mathematics, (d) focusing on real
systems and observable state variables, (e) rigorously
evaluating model performance, and (f) effectively com-
bining biology, mathematics, and statistics in interdis-
ciplinary teamwork. As always, a well-designed ex-
periment can pose a strong challenge to a model and
help cut through a confusing fog of alternative possi-
bilities. The Tribolium system has been studied and
modeled in ecology for over 70 yr. We are just begin-
ning to attain a mathematical understanding of its work-
ings and a new appreciation of its possibilities.
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APPENDIX

Here we describe our numerical methods for the compu-
tation of the deterministic and stochastic Liapunov exponents
for the LPA model. The calculations center around a times
series of triples (Lt, Pt, At) and a matrix function Jt (Eq. 13).
In the case of the Liapunov exponent (LE) the triples are a
trajectory from the deterministic skeleton. In the case of the
stochastic LE (SLE) the triples are a trajectory from the full
stochastic model.

One problem with the direct use of Eq. 14 is that the matrix
product may be unstable. A workaround is to ‘‘scale’’ the
matrix product at each iteration. Let, s1, s2, . . . , st represent
a set of positive scalars and let St 5 Jt /st. Then, from Eq. 14,

21l 5 t ln\s s · · · s S S · · · S \t t t21 1 t t21 1

t
21 215 t ln\S S · · · S \ 1 t ln s . (A.1)Ot t21 1 i

i51

The ‘‘trick’’ is to choose the st scalars so that the matrix
product remains stable. We used

s 5 \J S S · · · S \t t t21 t22 1 (A.2)

with s1 5 \J1\. With this definition, \StSt21 · · · S1\ 5 1, and
from Eq. A1 we have

t
21l 5 t ln s . (A.3)Ot i

i51

The Liapunov exponent can now be computed as an arithmetic
mean of a sequence of scalars. At each iteration the Jacobian
Jt is computed from the values of (Lt, Pt, At) and multiplied
with the scaled matrix product St21St22 · · · S1, and the new
scalar st is obtained as the norm of the matrix product
JtSt21St22 · · · S1. The matrix product JtSt21St22 · · · S1 is divid-
ed by st to obtain a new scaled matrix product StSt21 · · · S1.
Since, at each iteration, the norm of the scaled matrix product
equals 1, the matrix product remains stable.

The problem of numerical roundoff error must also be han-
dled carefully. At each iteration one must recompute the av-
erage Eq. A3 using the next scalar in the sequence. As t gets
large, one must add a large number, the sum of the previous
t 2 1 scalars, to a much smaller number, st. This can produce
a large roundoff error. This loss of accuracy accumulates with
each iteration.

A related problem is deciding on convergence. How large
a value of t must one use in Eq. A3 to approximate Eq. 15
reasonably? Ideally, one would like to check for convergence
within some error tolerance level at each iteration. However,
as t gets large, adding another scalar to the mean does not
have much effect on the mean. For example, the mean of t
5 1 000 000 scalars will not be much different from the mean
of t 5 1 000 001 scalars, and it will look as if the mean l has
converged.

We addressed the roundoff problem by implementing an
algorithm where the average Eq. A3 is built up from a series
of averages of subsequences of scalars. For example, the av-
erage l4 is obtained as the average of (s1 1 s2)/2 and (s3 1
s4)/2. The average for l8 is obtained as the average of l4 and
average of (s5 1 s6)/2 and (s7 1 s8)/2. To get l16, an average
for t 5 9, . . . , 16 is computed in the same way l8 was
computed and the averages for t 5 1, . . . , 8 and t 5 9, . . . ,
16 are averaged. This process is repeated to get estimates l2,
l4, l8, l16, l32, etc. At every step in the process, averages
only occur between numbers computed from subsequences
of the same length. All computations were done using double
precision in the programming language C11 on a 32-bit
operating system.

This algorithm also provides a conservative method for
deciding on whether or not the average of the sequence has

converged. The estimate of l for t 5 1, . . . , 2n is obtained
by averaging the mean of the subsequence for t 5 1, . . . ,
2n21 and the mean of the subsequence for t 5 2n21 1 1, . . . ,
2n. To decide on convergence, these two ‘‘subsequence
means’’ are compared. If the absolute value of their difference
is less than a certain error tolerance «, then it is decided that
convergence has occurred.

We have found that one must choose « conservatively,
especially for the SLEs. This is because one is computing l
from a single realization of the stochastic process. Although
the process is ergodic, variation still occurs among SLEs
estimated from finite sequences. We always repeat the esti-
mation procedure using a different random-number sequence
and compare estimates to make certain they agree.

Convergence occurs more quickly if one ‘‘tosses out’’ an
initial subsequence of si’s from the computation of the mean.
This is because the scaled matrix product StSt21 · · · S1 tends
to ‘‘settle down’’ as t gets large.

In the special case of a periodic attractor, the deterministic
LE can be computed quickly and accurately without using
the sequence-averaging method. Assume the deterministic
process approaches a cycle with fixed period n. For large, t,
(Lt, Pt, At) 5 (Lt1n, Pt1n, At1n). From Eq. 14 we can write, for
t 5 mn,

21l 5 (mn) ln\(J J · · · J ) · · ·mn mn mn21 mn2n11

(J J · · · J )\n n21 1

215 (mn) ln\C · · · C \. (A.4)m 1

The matrices C1, C2, . . . , Cm, represent the product of the
Jacobian matrices taken in groups of n. As the system con-
verges onto its period-n cycle, the matrix Cm will approach
a constant value C*, which is the product of the Jacobian
matrices evaluated at each point on the cycle in the order in
which they are visited. As m → `, t → ` and Cm → C*.
Therefore, for large values of m, the matrix product CmCm21

· · · C1 will approach asymptotically the value fmM, where f
is the largest modulus of the eigenvalues of C* and M is a
matrix of constants. From Eq. 15 we have

21 ml 5 lim l 5 lim (mn) ln\f M\mn
m→` m→`

215 lim (mn) (m ln f 1 ln\M\)
m→`

21 21 215 n ln f 1 lim (mn) ln\M\ 5 n ln f. (A.5)
m→`

The LE can be computed directly from the eigenvalues of the
matrix C*. The matrix C* can be obtained by iterating the
system until it converges to its stable n-cycle. Then the Ja-
cobian matrices Jt11, Jt12, · · · , Jt1n are computed and the prod-
uct C* 5 Jt1n, Jt1n21, · · · , Jt11 is obtained. Next the eigen-
values of C* are computed using one of the many numerical
algorithms designed for this purpose. The LE is simply the
logarithm of the largest modulus of the eigenvalues divided
by the period.

In practice, we used the following procedure. We iterated
the model 50 000 times to remove transients. Then we com-
puted the scaled Jacobian product and generated the si scalars.
If the model was deterministic, we tested for a cycle of period
n # 100. If a cycle was found, the average of n of the si’s
was the estimate of l. If the model was stochastic or no cycle
was detected, we tossed out the first 50 000 si’s and used the
‘‘subsequence averaging’’ procedure described above on sub-
sequent values of si to generate an estimate of l.

Estimates of the deterministic LEs were usually obtained
quickly. Convergence was much slower for the stochastic
LEs; for example, for « 5 0.0001, convergence sometimes
took over a million iterations. But convergence did occur in
a consistent and repeatable fashion.


