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Abstract. Gulls are highly adaptable animals that
thrive in proximity to humans. Although gulls enjoy legal pro-
tection in North America, England, and Europe, they often
conflict with human interests by spreading disease, transport-
ing contaminants, fouling public areas with droppings, and
colliding with aircraft. Of particular concern are aggregates of
“loafing” gulls that gather on parking lots, rooftops, and air-
port runways. Loafing in birds is a general state of immobil-
ity that involves behaviors such as sleeping, sitting, standing,
resting, preening, and defecating. The ability to predict the in-
cidence of aggregated loafing provides a first step toward the
amelioration of bird/human conflicts. We used mathematical
models to predict the aggregate loafing behavior of gulls as a
function of environmental conditions and tested model porta-
bility across years, phase of breeding cycle, loafing location,
and species. Because groups of loafing birds quickly reassem-
ble after disturbance, algebraic models for the steady-state dy-
namics can be obtained from the differential equations using
time-scale analysis. The accessible management tool requires
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data collection on an appropriate time scale and information-
theoretic model selection from a suite of alternative algebraic
models.

Key Words: Airport runways, droppings, environmen-
tal variables, gulls, habitat occupancy dynamics, loafing, man-
agement, mathematical model, rooftops, Salmonella.

1. Introduction. Loafing in birds is defined as a general state
of immobility that involves a heterogeneous collection of behaviors
such as sleeping, sitting, standing, resting, preening, and defecating
(Amlaner and Ball [1983]). Loafing thus serves a variety of functions
and cannot be considered as a single behavior. Nevertheless, loafing
is a useful term for a class of bird behaviors that often conflict with
human interests.

Loafing gulls (Family Laridae) were considered to be a “serious prob-
lem” in 23 states of the United States in 1990, and they ranked sixth
among all problem species groups among state Animal Damage Con-
trol personnel (Packham and Connolly [1992]). Gull droppings con-
tain contaminants and nutrients transferred from landfills (Ganning
and Wulff [1969], Fennel et al. [1974], Leonzio et al. [1986], Belant
[1997]), accelerate nutrient loading of aquatic systems (Portnoy [1990]),
and “whitewash” buildings, boats, piers, and other areas (Fitzwater
[1988]). Droppings of roof-nesting gulls erode roofing materials and gull
feathers block roof drainage systems (Monaghan and Coulson [1977],
Vermeer et al. [1988]). Gulls carry Salmonella, Campylobactor , and Lis-
teria (Quessey and Messier [1992]), and the proportion of gulls carry-
ing Salmonella correlates positively with the incidence of salmonellosis
among humans (Monaghan et al. [1985]).

Gulls loafing on airport runways pose one of the most serious prob-
lems. Gulls and aircraft often collide, resulting in expensive aircraft
repairs and loss of avian and human life (Murton and Wright [1968],
Stout et al. [1974], Dolbeer et al. [1993], Belant [1997], Cleary and Dol-
beer [2005]). In 1912, the first human fatality from a bird/aircraft colli-
sion involved a herring gull (Larus argentatus). Between 1990 and 2003,
21,684 bird/aircraft strikes involving known species of birds were re-
ported to the United States Federal Aviation Administration. Of these
strikes, 5,323 (24.5%) involved gulls and, of these, 891 (16.7%) resulted
in damage to aircraft (Cleary and Dolbeer [2005]).
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Management of the “gull problem” is complicated by the fact that
these indigenous and often migratory species enjoy legal protection
in North America, England, and Europe. Moreover, gulls are highly
adaptable animals that thrive in proximity to humans. Anthropogenic
factors (Kadlec and Drury [1968], Spaans [1971], Patton and Hanners
[1984], Belant and Dolbeer [1993]) accounted for dramatic increases
in gull populations over the past half century (e.g., Drury and Kadlec
[1974], Conover [1983], Dolbeer and Bernhardt [1986], Vermeer [1992]).
Gull management requires an integrated, landscape-level approach in-
volving government agencies, businesses, wildlife managers, landscape
and building designers, and private citizens (Belant [1997]). An abil-
ity to predict the temporal dynamics of aggregate loafing sites would
facilitate efforts to lessen the gull/human conflict.

Henson et al. [2004] developed a model that accurately predicted
numbers of glaucous-winged gulls (L. glaucescens) loafing on a pier
near a breeding colony in Washington, USA. The model was validated
on an independent data set and successfully field-tested six months
later with a priori model predictions. Clear dynamic patterns emerged
in the abundance of loafing gulls even though individuals moved in
and out of the loafing area more or less continuously throughout the
day. Dynamics were predicted by three environmental factors: day of
the year, height of the tide, and solar elevation. The portability of the
model, however, was unknown.

Here we use the Henson et al. [2004] study as a basis to develop
an accessible tool for managers. We test the tool’s portability across
years, local loafing location, breeding cycle phase, species, and conti-
nent. In particular, we test the procedure in four circumstances, each
involving loafing by gulls on human-made structures adjacent to breed-
ing colonies: (a) glaucous-winged gulls loafing on the same pier dur-
ing the same reproductive phase (nest-building/egg-laying) as in the
original Henson et al. [2004] study but two years later; (b) glaucous-
winged gulls loafing during the same reproductive phase as in the orig-
inal study but on a rock jetty approximately 200 m from the pier;
(c) glaucous-winged gulls occupying the same jetty during a differ-
ent reproductive phase (chick-rearing) than in the original study; and
(d) herring and great black-backed gulls (L. argentatus and L. mar-
inus, respectively) loafing on roof tops on Appledore Island, Maine,
USA, during the incubation/chick-hatching phase.
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2. Methods

2.1 Data collection. Data must be collected sufficiently densely
in time to capture system dynamics. In this study, we collected data
hourly because the abundance of loafing gulls depends primarily on
environmental conditions that tend to change over a period of several
hours.

At the top of each hour, from 0500 to 2000 Pacific Standard Time
(PST) on May 9, 2002 to June 6, 2002 (original study) and June 3–16,
2004, numbers of glaucous-winged gulls loafing on a pier in the ma-
rina adjacent to the Protection Island National Wildlife Refuge nesting
colony (48◦7′′N, 122◦55′′W), Strait of Juan de Fuca, Washington, were
monitored. Counts were made using a 20–60× spotting scope from a
33-m-high bluff (Henson et al. [2004]). Also on June 3–16, 2004 and ad-
ditionally on June 28, 2004 to July 16, 2004, counts were made of gulls
loafing on a jetty at the entrance of the marina, 200 m south of the
pier. Both the pier and jetty were protected from prevailing westerly
winds by a steep bluff.

At the top each hour, from 0500 to 2000 Eastern Standard Time
(EST) on May 14, 2005 to May 21, 2005 and May 27, 2005 to June
10, 2005, loafing herring and great black-backed gulls were counted on
seven roofs of buildings at the Shoals Marine Laboratory, Appledore
Island, Maine (42◦59′′N, 70◦37′′W). The seven sites were directly ad-
jacent to a large breeding colony of these birds. The colony and roofs
were somewhat protected from prevailing easterly winds by island to-
pography. Counts were made through binoculars by on-foot observers
without visible disturbance to the birds.

Solar elevations and tide height predictions were obtained from the
National Oceanographic and Atmospheric Administration (NOAA).
Weather data for Protection Island were obtained from the NOAA
weather station located on Smith Island, 22 km to the north. Weather
data for Appledore Island were obtained from the NOAA Isle of Shoals
weather station located on Appledore Island. In each case, weather
data included wind speed, barometric pressure, temperature, and wind
direction. Table 1 summarizes the variables used to designate the en-
vironmental factors.

2.2 Modeling assumptions. A primary principle of mathe-
matical modeling is to identify a parsimonious set of simplifying
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TABLE 1. Environmental variables.

Environmental factor Variable

Solar elevation S (t)
Tide height T (t)
Wind speed W (t)
Barometric pressure B(t)
Air temperature H (t)
Wind direction D(t)

Note: Each environmental variable x was nondimensionalized and scaled so that 1 ≤

x (t) ≤ 2.

assumptions that captures the main dynamics of a system. The model
proposed in this study is formulated from six assumptions:

(i) The number of gulls in the loafing site can be described with a
two-compartment model consisting of the loafing site and a remote
location (places other than the loafing site).

(ii) Fluctuations in numbers of gulls at the loafing site occur in direct
response to environmental variables that vary in time t. In particular,
gulls arrive at the site at a per capita rate proportional to a func-
tion of environmental variables E 1(t), and leave at a per capita rate
proportional to a function of environmental variables E 2(t).

(iii) The rate functions E 1(t) and E 2(t) are multiplicative functions
of powers of environmental variables (Damania et al. [2005], Henson
et al. [2007a, b], Moore et al. [2008]). This is equivalent to the as-
sumption of log-linear, or Poisson, regression of rates on environmental
factors (McCullagh and Nelder [1989]).

(iv) The total number of gulls in the two-compartment system—that
is, the total number of gulls that are either occupying the loafing site
or may choose to occupy the loafing site—is constant. This assumption
holds for short-term studies during times of the season in which gull
numbers are relatively stable.

(v) The system recovers sufficiently rapidly after a disturbance that
the abiotic environment can be considered constant during the re-
covery. That is, the values E 1(t) and E 2(t) remain approximately
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constant during the time it takes the system to return to “steady state”
dynamics. This assumption is based on our observations over many
years at the Protection Island colony that occupancies (and behaviors)
essentially recover within 15 minutes after short-term “point distur-
bances” by eagles and humans (Henson et al. [2004, 2006], Damania
et al. [2005]).

(vi) The main source of noise in the census data is assumed to be de-
mographic rather than environmental stochasticity. This assumption is
motivated by the fact that all major environmental correlates are in-
corporated explicitly into the model. Demographic stochasticity in this
context arises from independent random binary choices of individual
gulls as they arrive in or depart from a habitat. This is analogous to
a stochastic birth–death model at the population level (Henson et al.
[2007b]).

2.3 Deterministic model. The general model is derived from a
standard “compartmental” ordinary differential equation. The net rate
of change of the number N of animals at the loafing site is the inflow
rate minus the outflow rate:

dN

dt
= [inflow rate] − [outflow rate].(1)

Let M (t) denote the total number of gulls in the two-compartment
system at time t . The inflow rate is the per capita flow rate aE 1(t)
into the loafing site multiplied by the number of animals M (t)−N (t)
outside the site, and the outflow rate is the per capita flow rate bE 2(t)
away from the site multiplied by the number of animals N (t) in the
site, where a,b > 0 are constants of proportionality (assumptions (i)
and (ii)). Model (1) thus becomes

dN

dt
= aE1(t)(M(t) − N) − bE2(t)N.(2)

Note that M (t) is not in general a population size but rather is the
total number of animals that are either already at the loafing site or
are eligible to choose to enter the loafing site.

Given assumption (v), the dynamics of equation (2) occur on two
time scales. Time-scale analysis introduces a small parameter in front
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of the derivative in equation (2), and the undisturbed “steady state”
dynamics of equation (2) are well-approximated by the algebraic equa-
tion 0 = aE1(t)(M(t) − N) − bE2(t)N , that is

N(t) =
M(t)

1 + bE2(t)/(aE1(t))
(3)

(Henson et al. [2006]). Over short time periods such as a few weeks, the
value of M (t), which is seasonally variable, often can be approximated
by a constant β (assumption (iv)). Substitution of M (t) = β, E (t) =
E 2(t)/E 1(t), and α = b/a into equation (3) yields the algebraic model

N(t) =
β

1 + αE(t)
,(4)

where N (t) is the number of animals occupying the loafing site at time
t in the absence of disturbance, the variable E (t) is a multiplicative
function of powers of environmental variables, and α, β > 0 are con-
stant parameters to be determined from data.

Model (4) is the model used in the management tool. When applied
to a specific loafing site, the function E (t) must be identified and the
parameters α and β must be estimated from data.

2.4 Stochastic model. Observations nearly always deviate from
model predictions; these model errors are called “residuals.” In a model
that captures the main trends of the dynamics, the residuals can be con-
sidered “noise” in the system. That is, the residuals can be thought of
as realizations of a random variable having some hypothesized distribu-
tion. The process of “model fitting”—the connection of a deterministic
mathematical model to data through parameter estimation—requires
assumptions regarding the distribution of residuals. A stochastic model
provides these assumptions and hence forms the basis for parameter
estimation.

Demographic noise—in this context meaning the variability due to
independent choices resulting in arrivals and departures—is approxi-
mately additive on the square root scale (Dennis et al. [2001], Hayward
et al. [2005], Henson et al. [2007b]). Thus, given assumption (vi), a
stochastic model is
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√
N(t) =

√
β

1 + αE(t)
+ σω(t),(5)

or equivalently,

N(t) =

(√
β

1 + αE(t)
+ σω(t)

)2

,(6)

where ω(t) is a standard normal random variable (mean zero and stan-
dard deviation one) uncorrelated in time and σ > 0 is a constant. In the
event that the quantity inside the parentheses in equation (6) becomes
negative, it is taken to be zero.

The stochastic model (5) is the basis of parameter estimation; the
(square root-transformed) residuals are modeled by the random vari-
able σω(t). Model (6) can be used by a manager to produce realistically
noisy simulations once α, β, σ, and E are known.

2.5 Environmental variables. By assumption (iii), we can
write

E = Sγ T δWεBζ HηDθ ,(7)

where γ, δ, ε, ζ, η, θ are constant parameters that can be positive, zero,
or negative, and where S, T, W, B, H, D are the solar elevation, tide
height, wind speed, barometric pressure, air temperature, and wind
direction, respectively (Table 1).

We nondimensionalized and scaled variables S , T , W , B , H so that
their values always lay between one and two (Damania et al. [2005],
Henson et al. [2007a, b], Moore et al. [2008]). This is accomplished
by subtracting off the minimum value, dividing by the new maximum
value, and adding one. For example,

Sscaled =
Sunscaled − min(Sunscaled)

max(Sunscaled − min(Sunscaled))
+ 1.(8)
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Input variables are nondimensionalized so that their units of mea-
surement are irrelevant, and they are scaled to be greater than one to
avoid numerical instability if exponents are negative.

Raw wind direction data are on a circular scale with 0 and 360 at
true north. We transformed wind direction to a linear scale by

Dlinear =

{
Dcircular if Dcircular ≤ 180,

360 − Dcircular if Dcircular > 180,
(9)

and then nondimensionalized and scaled the result as in equation (8).

A set of alternative models of the form (4) is generated by taking
combinations of the environmental variables in equation (7); for exam-
ple, E = S γ T δ and E = S γ B ζ H η yield two possible alternatives.

2.6 Parameter estimation. Parameters were estimated using
the method of nonlinear least squares (LS) on the square root scale.
That is, the sum of squared residuals

RSS(Ω) =
∑
data

(
√

observation −
√

prediction)2(10)

was minimized as a function of the vector Ω of model parameter values.
The minimizer Ω̂ gives the LS parameter estimates. Minimization was
carried out numerically in Matlab using the Nelder–Mead downhill
method (Press et al. [1986]).

2.7 Model selection. When comparing models, one should use a
selection criterion that takes into account the number of parameters as
well as the goodness of fit; models having more parameters should be
penalized. The Akaike Information Criterion (AIC ) is an information-
theoretic model selection index designed to select the best model from
a suite of alternative models. For LS parameters, the criterion is equiv-
alent to

AIC = n ln σ̂2 + 2κ,(11)

where n is the number of observations, σ̂2 = RSS(Ω̂)/n is the variance
of the likelihood function as estimated from the residuals, and κ is the
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number of model parameters, including σ2 (Burnham and Anderson
[2002]). The actual value of AIC , which can be positive or negative,
does not give any information about model selection; rather, model
comparison is based on the rank of the AIC values. The smallest AIC
value indicates the best model.

2.8 Test of model portability. This study considers whether
the model that was rigorously developed and validated in Henson
et al. [2004] is portable across years, local loafing sites, breeding-cycle
phase, species, and continental coasts as a management tool. The most
rigorous procedure for model testing involves validating the parameter-
ized model on independent data without re-estimating parameters (see,
e.g., Hayward et al. [2005]). Although rigorous model validation in this
sense should be carried out for data obtained at the same location in
the same season by randomly dividing the data into “estimation” and
“validation” sets, such validation attempts typically fail when applied
across seasons, habitats, and species. For example, the total number
of gulls β is expected to vary across habitats with differing occupancy
capacities and across seasons due to migration. Thus, in testing model
portability, we re-estimated parameters for each new data set.

In the initial Henson et al. [2004] study, the function E (t) was de-
termined to be E (t) = S (t)2T (t)−2 , where S (t) and T (t) denote the
solar elevation and tide height, respectively. To test the portability of
the model in Henson et al. [2004], we parameterized model (4) with
E = S γ T δ on each data set.

To test the portability of the general model structure, we parameter-
ized the suite of alternative models on each data set and used the AIC
to choose the best model for each.

2.9 Goodness of fit. We used goodness of fit as measured by the
generalized R2

R2 = 1 −

∑
data

(
√

observation −
√

prediction)2

∑
data

(
√

observation − mean)2
,(12)

where mean denotes the sample mean of the square roots of the obser-
vations. R2 estimates the proportion of the observed variability that
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TABLE 2. Least squares parameter estimates and goodness of fit R2 values for
model (4) with E(t) = S(t)γ T (t)δ .

Location α β γ δ R2

Protection Island 19.29 40.22 1.987 −7.034 0.66

Pier—June 2002
Protection Island 8.170 118.8 2.773 −3.678 0.60

Pier—June 2004
Protection Island 98.99 706.9 2.051 −4.145 0.81

Jetty—June 2004
Protection Island 3.612 171.6 7.086 −7.483 0.75

Jetty—July 2004
Appledore Island Model did not parameterize

Roofs—June 2005

Note: Parameter estimates for the 2002 data (from Henson et al. [2004]) are shown for

comparative purposes. Protection Island birds were glaucous-winged gulls. Appledore

Island birds were mixed groups of herring gulls and great black-backed gulls.

is explained by the model and thus gives a measure of the accuracy of
the model predictions.

3. Results. Table 2 summarizes the results of applying model (4)
with E = S γ T δ to each of the data sets. Application of the model to
the 2002 data (from Henson et al. [2004]) is shown for comparative
purposes. Note that because E is in the denominator of model (4),
positive (negative) exponents are associated with decreasing (increas-
ing) numbers of loafing gulls. The same model parameterized with a
relatively high R2 value for each of the Protection Island data sets.
The model originally was developed on the basis of data from the pier;
however, R2 values for the jetty were considerably higher than those
for the pier. The model suggests that gulls move to the respective loaf-
ing sites when the solar elevation is low and the tide is high; they
exit the sites when solar elevation is high and tide height is low. This
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model did not parameterize when applied to the Appledore Island data,
however.

Table 3 summarizes the best models of the form E =
S γ T δW εB ζ H ηDθ for each 2004 data set from Protection Island and
for the 2005 data set from Appledore Island. Values of R2 were mod-
estly higher for each Protection Island model of this form when com-
pared with results for E = S γ T δ in Table 2. Decreases in solar elevation
and increases in tide height and temperature were associated with in-
creases in numbers of loafing gulls in all three Protection Island data
sets. Increases in barometric pressure were associated with decreases
in numbers of loafing birds on the pier in June and on the jetty in
July. Increases in wind speed and in deviation of wind direction from
the north were associated with decreases in loafing gulls on the jetty in
July. Wind speed and direction were not predictors for the pier or jetty
in June, nor was barometric pressure a predictor for the jetty in June.

The models did not fit the Appledore Island data as well as the
Protection Island data but still predicted a sizable proportion of the
dynamic variability (R2 = 0.48). Just as for the Protection Island mod-
els, decreases in solar elevation and increases in tide height were asso-
ciated with increased numbers of loafing gulls, and increases in wind
speed were associated with decreases in numbers of loafing gulls. Unlike
models for Protection Island, however, increases in barometric pressure
were associated with predicted increases in loafing gull numbers, and
decreases in temperature were associated with predicted increases in
loafing gull numbers. Deviation of wind direction from the north, most
often from the northeast, east, or southeast, resulted in increased num-
bers of loafing gulls.

Figures 1A–C shows a close correspondence between predictions and
data for Protection Island. Predictions and data for Appledore Island
are shown in Figure 2. In both systems, counts toward the end of the
day often exceeded predictions.

4. Discussion

4.1 Scale, determinism, and individual variability. The
identification of scales at which random individual-level behaviors form
patterns and the mechanisms behind the pattern formation is of key
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FIGURE 1. Protection Island model prediction (solid curve), observed number
of glaucous-winged gulls (circles), and tide height (dashed curve) versus hour
of day. Each panel is identified with the day of the year. Tide heights are in
meters. (A) For gulls on the pier during the June 2004 data collection. (B) For
gulls on the jetty during the June 2004 data collection period. (C) For gulls
on the jetty during the July 2004 data collection period.

importance (Hunt and Schneider [1987], Levin [1992], Silverman et al.
[2001]). Dynamic patterns emerge for assemblages of birds even though
individual birds move more or less independently or in small groups
due to individual differences and histories as well as to social interac-
tions (Silverman et al. [2001]). The ability to predict the dynamics of
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FIGURE 2. Appledore Island model prediction (solid curve), observed number
of herring and great black-backed gulls on the roofs (circles), and tide height
(dashed curve) versus hour of day. Each panel is identified with the day of the
year. Tide heights are in meters.

loafing assemblages of gulls suggests that individual variability is less
important than deterministic forces at our scale of observation and
enumeration.

4.2 Application to the management of loafing gulls. The
timing of animal behavior, including loafing, is influenced by a variety
of demographic and environmental variables; thus, accurate prediction
based on a single variable is rarely possible (Henson et al. [2007b]). Our
results suggest that the modeling methodology detailed works best for
relatively predictable environments. Under these circumstances, a good
model may be locally portable both spatially and temporally. Indeed,
the Protection Island model was portable across years for the pier,
across location from the pier to the jetty, and across seasons for the
jetty.

The considerably higher R2 values for the Protection Island system
compared with the Appledore Island system deserve comment. Protec-
tion Island is situated in Washington’s inland waters, which are some-
what shielded from high winds. By contrast, Appledore Island occurs
in the open ocean and is subject to almost continuous winds. Wind
clearly alters the behavior and movement patterns of gulls (Henson
et al. [2007a, b]). Although wind direction was included as a variable
in the Appledore model, its highly variable nature and relative unpre-
dictability seemed responsible for much higher levels of stochasticity
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for the loafing patterns there. Moreover, concentrations of loafing gulls
on Appledore Island typically were smaller than those on Protection
Island (perhaps in part due to the wind), leading to increased demo-
graphic stochasticity.

4.3 Summary of management tool. The management tool for
predicting aggregates of loafing gulls can be summarized as follows:

1. Census data should be collected at regularly spaced, discrete time
intervals much shorter that the periods of environmental oscilla-
tions and should be collected throughout the entire cycle of envi-
ronmental change.

2. The deterministic loafing model is

N(t) =
β

1 + αEγ1
1 Eγ2

2 . . . E
γk
k

,(13)

where the Ei are the environmental variables, nondimensionalized
and scaled to be greater than one, that are hypothesized to drive
the dynamics. If the model is used over time spans during which
local numbers of gulls are changing rapidly (e.g., during migra-
tion), then the constant β should be replaced by a function M (t)
that describes the total number of gulls in the two-compartment
system. Such a function can be estimated from seasonal maximal
counts (e.g., see Henson et al. [2004]).

3. A collection of candidate models results from various combinations
of the environmental variables. If the candidate models do not
share the same number of parameters, the best model should be
selected using an information-theoretic criterion such as the AIC .
Otherwise, the model with the largest R2 can be deemed best.

4. Parameters α, β, γ1 , γ2 , . . . for the deterministic model can be es-
timated by LS on the basis of a stochastic model that accounts
for the main type of noise in the system.

5. The stochastic model can be used to simulate noisy time series.
6. Ideally, the fitted model should be tested against an independent

data set from the same location and time period. Sufficiently large
data sets can be divided into “estimation” and “validation” sets
by random sampling that is stratified so that both sets include a
variety of environmental conditions (Henson et al. [2004]).
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7. Model (13) can be used to make long-range predictions if the total
number of birds in the two-compartment system is fairly stable (β
is constant) or if M (t) is known, and if the environmental variables
that account for most of the variability are largely deterministic
(e.g., solar elevation, tide height). Otherwise, the model can make
short-range predictions based on weather forecasts, and it can sug-
gest a range of predicted outcomes based on a range of possible
weather changes.

The management tool outlined in this study has been used to predict
haul-out patterns of harbor seals (Phoca vitulina L.; Hayward et al.
[2005]) and most likely could be adapted to predict the behavioral
dynamics of a variety of marine organisms.

5. Conclusion. We wish to highlight the difference between our
approach and other management tools for predicting site occupan-
cies. First, rather than using traditional hypothesis testing, we use
an information-theoretic criterion for model selection. This powerful
approach requires a mechanistic understanding of the system, works
nicely with mathematical modeling, and penalizes models for over-
fitting. Second, our mathematical approach differs significantly from
more commonly used statistics-based analyses, techniques that often
entail data averaging, which masks important relationships among vari-
ables (Hayward et al. [2005]).

For personnel who make management decisions about loafing birds,
we believe the mathematical methodology presented in this study, in
tandem with preliminary statistical exploration, can offer a distinct
advantage over purely statistics-based decisions.
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