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Abstract. Oscillating population data often exhibit cycle irregularities such as episodes of damped oscillation
and abrupt changes of cycle phase. The prediction of such irregularities is of interest in applications
ranging from food production to wildlife management. We use concepts from dynamical systems
theory to present a model-based method for quantifying the risk of impending cycle irregularity.
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1. Introduction. Animal numbers can oscillate periodically in many biological popula-
tions. Laboratory examples include paramecia [22], blowflies [33], bean weevils [37], moths
[3], and flour beetles [6, 19].

Noise, always present in population dynamics, causes cycle irregularities such as outbreaks,
switches in oscillation phase [28], and episodes of damped oscillations caused by “saddle
fly-bys” [11] or other stochastic visitations of unstable equilibria. Phase switches (when,
for example, an “up-down” time series pattern becomes a “down-up” pattern) occur rather
frequently in laboratory populations of the flour beetle Tribolium castaneum. Figure 1.1
displays the larval numbers from control B of the experiment reported in Desharnais and
Costantino [16]. The data oscillate with period two but switch cycle phase at times t = 3 and
t = 13.

Cycle irregularities are important in a variety of applications ranging from food production
to forest management to species conservation. In this paper, we use the concepts of dynamical
systems theory to devise a method for predicting such irregularities in oscillating data.

In section 2, we use the univariate Ricker map to illustrate the dynamic mechanisms that
give rise to cycle irregularities and to develop a method for predicting such irregularities.
Section 3 applies the theoretical ideas to simulated data sets generated by two different multi-
variate models. In section 4 we use the method to predict cycle irregularities in experimental
data replicates of laboratory cultures of the flour beetle Tribolium.
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Figure 1.1. Experimental data from Desharnais and Costantino [16] replicate B. Tribolium castaneum
larval numbers oscillate in a 2-cycle. Phase switches occur at times t = 3 and t = 13. The time step is two
weeks.

2. Cycle irregularities. Consider a discrete time autonomous population model of the
form xt+1 = f (xt) where x is a scalar, a vector of life stage classes, or a vector of interacting
populations. To illustrate these ideas, consider specifically the scalar Ricker population model
[31, 32, 34]

xt+1 = bxte
−cxt .(2.1)

The Ricker map (2.1) has stable periodic solutions at many values of its parameters. For
example, when b = 9 and c = 1, the Ricker map has a stable 2-cycle solution given by
x0 = 1.099, x1 = 3.296, x2 = 1.099, x3 = 3.296, . . . . Since (2.1) is autonomous, the phase
shift x0 = 3.296, x1 = 1.099, x2 = 3.296, x3 = 1.099, . . . is also a stable 2-cycle solution.
Denote the first cycle “Phase 1” and the second “Phase 2.” Let B1 be the set of positive
initial conditions x0 ∈ R+ that give rise to solutions converging to the Phase 1 cycle, and let
B2 be the set of positive initial conditions that give rise to solutions converging to Phase 2.
These “basins of attraction” for the two cycle phases are sets on the real line. Some of the
numerically computed boundaries separating these phase basins are shown in Figure 2.1(a).
Initial conditions x0 with 4.840 < x0 < 7.425 converge to Phase 1; initial conditions with
2.198 < x0 < 4.840 converge to Phase 2; those with 0.345 < x0 < 2.198 converge to Phase
1; those with 0.040 < x0 < 0.345 converge to Phase 2; and so forth. (Near the origin, the
basin structure becomes complicated and cannot be shown in Figure 2.1(a).) Note that the
unstable equilibrium xu = 2.198 lies on the basin boundary. The reader should also note that
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Figure 2.1. Ricker map simulations with b = 9 and c = 1. (a) Four deterministic Ricker time series with
initial conditions x0 = 0.3, x0 = 1, x0 = 2.75, and x0 = 5. Red horizontal lines represent basin boundaries at
x = 0.3445, x = 2.198, and x = 4.840. Since x0 = 1 and x0 = 5 are both in basin B1, their orbits converge to
Phase 1 (shown in black). Since x0 = 0.3 and x0 = 2.75 are both in basin B2, their orbits converge to Phase
2 (shown in blue). (b) Stochastic Ricker simulation with σ2 = 0.0225. Red horizontal lines represent basin
boundaries as in (a). The red lines are bracketed by blue horizontal lines that demarcate the 10% zones. Points
on the orbit which lie in the 10% zones are colored red and have at least a 10% probability of switching phase at
the next time step. (c) The probability P (x) of switching phase at the next time step given the current value of
x. Red vertical lines represent values of x at which P (x) = 50% and correspond to the basin boundaries. Blue
vertical lines show values of x at which P (x) = 10% and correspond to the boundaries of the 10% zones.

the term “basin” is being used here to differentiate two separate basins of attraction for two
different solutions lying on the same 2-cycle attractor, while the usual meaning lumps B1 and
B2 together as a single basin of attraction for the 2-cycle attractor itself. (To view B1 and B2

as basins in the traditional sense, we could use the composite map to decompose the 2-cycle
attractor into two separate stable equilibria with two separate basins of attraction. However,
this complication is unnecessary for our purposes.)

If x0 ∈ B1 so that the solution converges to Phase 1, then taking f (x0) as an initial
condition would lead to a solution converging to Phase 2; hence x1 = f (x0) ∈ B2. Similarly,
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if x0 ∈ B2, then x1 ∈ B1. In this way, deterministic orbits must always bounce back and forth
between the two basins at each time step as they converge to the appropriate phase of the
2-cycle (Figure 2.1(a)).

Process noise in ecological data is of two basic types: environmental and demographic.
Environmental noise is additive on the log scale, while demographic noise is additive on the
square root scale [15]. The methods in this paper work equally well for both kinds of noise;
however, we will focus on demographic stochasticity. Thus we can incorporate demographic
noise by means of

xt+1 =
(√

bxte−cxt + Et

)2
,(2.2)

where Et is a random normal variable with mean zero and variance σ2 (see Dennis et al. [15]).
When σ = 0, we recover the “deterministic skeleton” (2.1) [36]. As σ increases from zero,
the cycles become irregular. In particular, orbits may not always alternate between basins at
each time step. If a stochastic orbit remains in the same basin for two consecutive time steps,
we say a “phase switch” has occurred. For example, in the stochastic simulation shown in
Figure 2.1(b), the orbit is in Phase 2 for t = 86 to 91 but in Phase 1 for t = 97 to 100. On
examination of the basins in which the t = 92 to 96 values lie, we see that the orbit switches
phase at t = 97, since x96 and x97 are both in B2.

The conditional probability P (x) of switching phase at the next time step, given a current
value of x, is graphed in Figure 2.1(c). P (x) is lowest at the 2-cycle values x = 1.099 and
x = 3.296 and is highest along the basin boundary. P (x) can be considered a kind of measure
of how far a point is from the deterministic attractor or, alternately, how close a point is to
the basin boundary.

Figures 2.1(b) and (c) show the numerically computed values of x for which P (x) = 10%.
These values bracket the basin boundaries; and when x falls inside these “10% zones,” there
is at least a 10% chance of suffering a phase switch at the next time step. For example,
P (x) > 10% whenever 1.691 < x < 2.669.

For the stochastic orbit in Figure 2.1(b), all values xt for which P (xt) ≥ 10% are colored
red. Note how the red tagging provides a fairly good warning of impending cycle irregularities.
For example, at t = 69, the orbit falls into a 10% zone, and the following values for t = 70
to 73 are highly irregular. At t = 76 the orbit again enters the 10% zone, and irregularities
follow for t = 77 to 85. At t = 92 the orbit once more lands in the 10% zone, and irregularities,
including the aforementioned phase switch at t = 97, follow.

Note how the orbit sometimes lingers near the unstable equilibrium xu = 2.198 if stochas-
tically bumped into its vicinity (for example, at times t = 70, 79, 92). This phenomenon is
similar to a “saddle fly-by,” although the unstable equilibrium here is a repellor rather than a
saddle. In a “saddle fly-by,” the orbit is stochastically bumped near the stable manifold of a
saddle and approaches the saddle before moving away. In a “repellor visitation,” the orbit is
stochastically knocked directly into the neighborhood of a repellor or maps in from a nonlocal
stable set and then lingers before moving away. In cycling data, saddle fly-bys and repellor
visitations of unstable equilibria typically give rise to episodes of damped oscillation [11].

To summarize this example, we suggest an empirical “rule of thumb”:
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Figure 3.1. Leaf-herbivore model simulations with f = 1.5, a = .005, r = 3.8, and δ = 1.0. (a) Basins
of attraction for the two phases of the attracting 2-cycle. The basins were determined by iterating points in
state space (on a grid of mesh 1/10) forward 200 time steps with the deterministic model. The red triangles are
the 2-cycle values (v, h) = (108.76, 59.94), (120.9, 102.25). The unstable saddle equilibrium (v, h) = (110, 81) is
indicated by a red “x.” The 2-cycle attractor is shown above this plot as a time series. (b) Approximation of
the 50% (red) and 10% (blue) contour lines for P (v, h). These curves were computed by finding the frequency
of phase switching at the next step for points on a grid of mesh 1/10 in state space. Each point tested was
iterated one time step forward, 2000 times, with σ2

v = .008 and σ2
h = .032. The set of all initial conditions with

9.75%−10.25% probability of switching phase on the next step is plotted in blue. The set of all initial conditions
with 49.5%− 50.5% probability of switching phase on the next step is plotted in red. The deterministic 2-cycle
values are indicated by triangles and the unstable equilibrium by an “x.”

Remark 2.1. The conditional probability P (x) of switching phase at the next time step,
given a current data point x, can be considered a measure of how close the point x is to the
basin boundary. The set of points for which P (x) ≥ 10% brackets the basin boundaries. When
the current data point falls within these “10% zones,” cycle irregularities are likely to follow.
The choice of 10% is subjective and depends on the acceptable risk level in the particular
application. A more conservative approach would use a smaller contour value (and hence a
wider zone around the basin boundaries).

3. Theoretical examples in population models. In this section, we use two examples to
illustrate how cycle irregularities occur in multivariate models and in cycles of periods other
than 2. The first example is a two-species model with a 2-cycle, and the second is a single
species structured model with a 4-cycle.
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Figure 3.2. Stochastic orbit of the leaf-herbivore model with σ2
v = .008 and σ2

h = .032. 600 time steps are
plotted in a close-up of state space. Red curves approximate basin boundaries; blue curves bracket the basin
boundaries and demarcate the 10% zones. Points of the orbit that suffered a phase switch at the next step are
colored green; note that most lie within the 10% zones, as expected.

3.1. Leaf-herbivore model. Consider a leaf-herbivore model of Edelstein-Keshet [20],

vt+1 = fe−ahtvt,(3.1)

ht+1 = r

(
δ − ht

vt

)
ht, vt �= 0,

where ht is the number of herbivores at time t on a tree of leaf mass vt and f, a, r, and δ
are positive constants. When f = 1.5, a = 0.005, r = 3.8, and δ = 1, this model has a stable
2-cycle attractor, both phases of which are stable solutions. The basins of attraction for the
two phases are shown in Figure 3.1(a), along with the 2-cycle values and an unstable saddle
equilibrium lying on the basin boundary.
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Figure 3.3. Stochastic orbit of the leaf-herbivore model with σ2
v = .008 and σ2

h = .032. Points on the orbit
that fall within the 10% zones are colored red. Points that suffered a phase change at the next time step are
indicated by a green diamond. (a) h component for two sections of the stochastic time series shown in Figure
3.2. Two typical kinds of cycle irregularities are contained in sections t = 125 to 133 and t = 474 to 485.
In the first case, the oscillations are irregular (down-up-up) with large amplitude, while in the second case the
oscillations are irregular and damped. (b) State space close-ups of two sections of the time series in (a). For
t = 474 to 485, the orbit starts out regularly, following the deterministic 2-cycle. Beginning at t = 477, the
orbit lands near the basin boundary, then switches phase, and lands near the basin boundary again. From there
the orbit follows the stable manifold toward the unstable equilibrium for a saddle fly-by before returning to the
2-cycle. A close-up of the saddle fly-by is shown for t = 480 to 483. The panel for t = 125 to 133 shows how the
orbit is knocked far from the 2-cycle and visits regions of state space in which the basins are more complicated.
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Consider the stochastic model

vt+1 =
(√

fe−ahtvt + E1t

)2
,(3.2)

ht+1 =

(√
r

(
δ − ht

vt

)
ht + E2t

)2

, vt �= 0,

where the random vector Et = (E1t, E2t)
′ is assumed to have bivariate normal distribution

with mean vector 0 and variance-covariance matrix Σ [15].

Given that the stochastic system (3.2) is at (vt, ht) in state space, one can numerically
compute the probability P (vt, ht) that the next stochastic step (vt+1, ht+1) will be a phase
switch. Figure 3.1(b) shows two numerically computed contours in state space along which
P (v, h) is constant. Along the blue contours, P (v, h) = 10%, and along the red contours,
P (v, h) = 50%. Note that the 50% contours follow the basin boundaries, while the 10%
contours roughly parallel and “bracket” the boundaries. We will call these bracketing sets
“10% zones.”

Figure 3.2 shows a stochastic run of 600 time steps in a close-up of the state space plot
shown in Figure 3.1(b). The orbit points which suffer a phase switch at the next step are
green. Note that most of the green points lie within the 10% zones. Indeed, less than 10%
of all points landing outside the 10% zones are expected to give rise to phase switches at the
next step. By their definition, the 10% zones give a fairly accurate indication of impending
phase switches.

Do the 10% zones also provide a good indicator for the onset of other types of cycle
irregularities? In Figure 3.3, we consider two sections of the stochastic time series of Figure
3.2. Orbit points landing within the 10% zones are colored red, while those leading to phase
switches are also marked by a green diamond. Two typical kinds of cycle irregularities appear
in the sections t = 125 to 133 and t = 474 to 485 (Figure 3.3(a)). In the first case the time
series oscillations are irregular (“down-up-up”) with large amplitude, while in the second case
the oscillations are irregular and damped. In Figure 3.3(b), we take a closer look in state
space at the mechanics of these time series irregularities. The section beginning with t = 474
starts off with a fairly regular pattern, following the deterministic 2-cycle. At t = 477, the
orbit lands near the basin boundary within the 10% zone, then switches phase, and lands
near the basin boundary again. From there the orbit follows the stable manifold toward the
unstable equilibrium and lingers for a saddle fly-by before returning to the 2-cycle. The section
beginning with t = 125 starts with a point outside the 10% zone but which in fact leads to
an unpredicted phase switch. The next step (t = 126) is, however, inside the 10% zone, even
though in the time series it appears rather unremarkable (Figure 3.3(a)). Although there is
no phase switch at the next step, there is an upcoming irregularity. The orbit is stochastically
knocked down across three basin boundaries and then to the right into a 10% zone, after which
it switches phase and lands far from the attractor. A similar pattern follows until the orbit
lands outside the 10% zone fairly close to the attractor at t = 133, after which the pattern
becomes more regular.

In both of these cases of irregularity, a 10% zone visitation (at t = 477 and t = 126)
served as a warning of the upcoming cycle disturbance. Furthermore, in both cases, the
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Figure 3.4. Bartlett model simulations with α = 0.02, b = 3.14, and µ = 0.9. (a) Time series for
Bartlett model 4-cycle. (b) Four basins of attraction corresponding to the four phases of the attracting 4-cycle.
The 4-cycle values, indicated by red triangles, are (x, y) = (60.67, 85.09), (122.38, 69.18), (121.51, 129.30),
(71.64, 133.44). White arrows show the temporal sequence. The red “x” marks the unstable equilibrium at
(x, y) = (100.80, 112.00). (c) 50% and 10% contour lines of P (x, y) for the stochastic Bartlett model are repre-
sented by red and blue curves, respectively. Here σ2

x = 0.045 and σ2
y = 0.025. To compute the phase switching

frequency, 2000 one-step stochastic predictions were made from each point on a grid of mesh 1/10. Also shown
is a 600 step stochastic orbit. Points landing within the 10% zone are colored red. Orbit points that switched
phase at the next step are indicated by green diamonds. Black triangles mark the values of the deterministic
4-cycle, while a black “x” identifies the unstable equilibrium.

crucial orbit point (at t = 477 and t = 126) would appear unremarkable in the unfolding time
series (Figure 3.3(a)) unless one had knowledge of its proximity in state space to the basin
boundary as measured by the 10% zone or some other appropriate measure.

3.2. Bartlett model. In this example, we consider a well-known juvenile-adult model of
Bartlett [1]. A stochastic version is

xt+1 =
(√

(b− αyt) yt + E1t

)2
,(3.3)

yt+1 =
(√

xt + (1− µ) yt + E2t

)2
,
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Figure 3.5. Stochastic simulation of Bartlett model with α = 0.02, b = 3.14, µ = 0.9, σ2
x = 0.045, and σ2

y

= 0.025 from Figure 3.4(c). Orbit points falling within the 10% zone are colored red. Green diamonds indicate
points that lead to a phase switch at the next time step. (a) The time series is divided into five sections of
interest (see text). (b) State space graphs of the five sections of the stochastic time series in (a). 50% and 10%
contour lines for P (x, y) are shown in red and blue, respectively. Orbit points are shown in temporal sequence,
with the direction of motion indicated by red arrows. t = 174 to 185 shows a fairly regular section, but we see
in state space that the last orbit point is within a 10% zone and in fact leads to a phase switch at the next step.
A period of irregularity follows, as shown in the second panel for t = 185 to 199. For t = 185 to 188, the time
series still appears regular, but we see from state space that the orbit is oscillating near the basin boundary.
This leads to a visitation of the unstable equilibrium beginning at t = 189, and the orbit lingers there before
moving away. The move away is shown in the third panel with t = 199 to 214 as the system regains regularity.
The fourth panel, t = 214 to 225, is fairly regular, deviating minimally from the 4-cycle pattern. The fifth panel
of the time series, t = 225 to 235, shows the stochastic orbit landing inside the 10% zone at t = 226, and again
at t = 227, after which a phase change occurs. With the phase change comes a new period of irregularity, as
the stochastic orbit is knocked far from the attractor before finally returning to the 4-cycle for the last few time
steps. The last panel shows a close-up of the equilibrium visitation for t = 189 to 199. The unstable equilibrium
is located at (v, h) = (100.80, 112.00), within the diamond created by the 50% contour lines.
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where xt and yt are the numbers of juveniles and adults at time t, respectively, and b, α, and
µ are positive constants with 0 < µ < 1. Here the random vector Et = (E1t, E2t)

′ is assumed
to have bivariate normal distribution with mean vector 0. The deterministic Bartlett model
obtains for Et identically 0. When b = 3.14, α = 0.02, and µ = 0.9, the deterministic Bartlett
model has a stable 4-cycle attractor [6]. See Figure 3.4(a). The 4-cycle attractor corresponds
to four different stable solutions, one for each phase of the cycle. The corresponding four basins
of attraction, along with the four values on the stable cycle, are shown in Figure 3.4(b). A
repelling equilibrium exists at the vortex of the pinwheel of basin boundaries.

When noise is incorporated into the Bartlett model (3.3), the values of P (x, y) can be
computed numerically. Figure 3.4(c) shows 10% contours (blue) and 50% contours (red) in
state space. While the 50% contours roughly follow the basin boundaries, there are regions
(for example, inside the diamond around the repellor formed by the 50% contour) for which
P (x, y) > 50%. A 600 step stochastic simulation also is plotted in Figure 3.4(c). The majority
of orbit points that give rise to a phase switch at the next time step (green diamonds) do fall
within the 10% zone, as expected.

The 10% zones also warn of other types of cycle irregularities. Figure 3.5 shows a segment
of the stochastic simulation in Figure 3.4(c), both as a time series and in state space. Two
main periods of cycle irregularity occur during this segment. (A long period of damped
oscillations begins at t = 189, and an “up-up-down-down” irregularity with large amplitude
begins at t = 227.) Initially, the segment tends to follow the deterministic 4-cycle fairly closely.
However, at t = 185 the orbit lands in a 10% zone, and a long episode of irregularity follows.
Note that for t = 185 to 188, the time series in Figure 3.5(a) still appears regular, but we see
from state space in Figure 3.5(b) that the orbit is oscillating near the basin boundary. This
leads to a visitation of the unstable equilibrium beginning at t = 189, and the orbit lingers
there for ten more time steps before moving away for t = 199 to 214. For t = 214 to 225, the
system is fairly regular, deviating minimally from the 4-cycle pattern. The stochastic orbit
lands inside the 10% zone at t = 226 and again at t = 227, after which a phase change occurs.
With the phase change comes another period of irregularity, as the stochastic orbit is knocked
far from the attractor before finally returning to the 4-cycle for the last few time steps of
the segment. Note that the crucial orbit points themselves at t = 185 and t = 226 would
seem unremarkable in the unfolding time series (Figure 3.5(a)) unless one realized they were
sufficiently close to the basin boundaries to be in the 10% zones. A recognition, however, that
they are in the 10% zones warns of the two impending episodes of cycle disruption.

4. Theory applied to experimental data. In this section, we apply our proposed rule of
thumb for predicting cycle irregularities to experimental data.

The discrete stage-structured “LPA” Tribolium model has successfully explained and pre-
dicted nonlinear phenomena in a variety of contexts, including transitions between dynamic
regimes (such as equilibria, 2-cycles, 3-cycles, invariant loops, and chaos), multiple attractors,
saddle influences, stable and unstable manifolds, and lattice effects [4, 7, 5, 10, 8, 11, 12, 9, 13,
14, 15, 17, 18, 28, 24, 27, 25, 26, 30]. We now use the LPA model and the methods proposed
in this paper to predict the cycle irregularities observed by Desharnais and Costantino [16].

Noise in laboratory cultures of flour beetles is mainly demographic [15]. A version of the
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Figure 4.1. Experimental data shown in cross section of state space at P = 30 for LPA model. The
red curve shows the location of the basin boundary as calculated by the deterministic model. The blue curves
bracket the 10% zones. Here σl = 3.848, σp = 2.962, and σa = .2401. Experimental data control replicates
A,B,C, and D from Desharnais and Costantino [16] are projected onto the plane P = 30. Data points which fall
within the 10% zone are shown in red. Projections of the 2-cycle coordinates (L,P,A) = (35.26, 136.26, 104.14),
(282.24, 17.03, 114.08), and the unstable equilibrium (L,P,A) = (128.03, 61.83, 98.74) are indicated by black
triangles and a black “x,” respectively.

LPA model incorporating demographic stochasticity is

Lt+1 =
(√

bAt exp (−celLt − ceaAt) + E1t

)2
,

Pt+1 =
(√

(1− µl)Lt + E2t

)2
,(4.1)

At+1 =

(√
Pt exp (−cpaAt) + (1− µa)At + E3t

)2

,

where L denotes the number of (feeding) larvae, P denotes the number of pupae (nonfeeding
larvae, pupae, and callow adults), and A denotes the number of (mature) adults. The discrete
time interval is two weeks. The coefficient b > 0 denotes the average number of larvae recruited
per adult per unit time in the absence of cannibalism, µl and µa are the larval and adult per
unit time probabilities of dying from causes other than cannibalism, and the exponentials
represent the probabilities that individuals survive cannibalism one unit of time, with “can-
nibalism coefficients” cel, cea, cpa > 0. The random vector Et = (E1t, E2t, E3t)

′ is assumed to
have trivariate normal distribution with mean vector 0 and variance-covariance matrix ΣLPA.
E0, E1, . . . are assumed to be uncorrelated. The deterministic skeleton (ΣLPA = 0) of model
(4.1) is the deterministic LPA model. Local stability results for the LPA model are obtained
using standard linearization techniques [8, 23].

The conditioned least squares parameter estimates from the four control replicates re-
ported in Desharnais and Costantino [16] were b = 8.913, cel = 0.008446, cea = 0.008572,
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Figure 4.2. Experimental data control replicates A,B,C, and D from Desharnais and Costantino [16]. The
panels on the left show the cross-section of LPA state space at P = 30. Red and blue curves indicate the basin
boundary and the 10% contours, respectively. Red data points are those within the 10% zones. The time series
(L versus t) of the replicates are shown on the right. The time series illustrates how most cycle irregularities
can be predicted by the 10% zone rule. Note the saddle fly-by in replicate C.

µl = 0.5171, cpa = 0.01795, and µa = 0.1064, with

ΣLPA=


 3.848 0.3665 0.1440

0.3665 2.962 −0.5895
0.1440 −0.5895 0.2401


 .

At these parameter values, the deterministic LPA model admits an unstable saddle point
(rounded to the nearest beetle) of [128, 62, 99]. The LPA model also predicts a 2-cycle attractor
and hence two stable 2-cycle solutions (one for each phase of the cycle). The basins of
attraction for these phases, along with the replicate data, are shown in Figure 4.1. The
red curve is the basin boundary, and the blue curves are the 10% contours. The red data
points lie within the 10% zone. The two values of the 2-cycle are shown, as well as the saddle,
which lies on the basin boundary.
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Figure 4.2 presents each replicate both in state space and as a time series. From the time
series, it is clear that all cycle irregularities were preceded by a data point falling into the 10%
zone. Of course, not all visitations of the 10% zone actually led to cycle disturbances.

5. Summary and discussion. Populations often exhibit temporal cycles, but as a result of
noise, the oscillations may display irregularities in phase and amplitude. Understanding and
anticipating such irregularities is of great importance in applications from pest control and
species conservation to physiology and epidemiology [35]. In this paper, we have proposed a
method for understanding and predicting cycle irregularities. The method is model-based. It
requires a deterministic model for the population dynamics, together with a stochastic version
of the model that describes random deviations from the deterministic predictions. If the
deterministic model is autonomous, each phase of the cycle attractor is a stable solution. For
each phase there is a basin of attraction, and these basins are separated by basin boundaries
which may contain unstable equilibria. In general, the closer to the basin boundary a data
point falls, the higher the probability it will stochastically switch phase at the next time step.
Amplitude-dampened oscillations, caused by saddle fly-bys or repellor visitations, also occur
when the data fall near the basin boundary, since that is where the unstable equilibria lie and
exert the most influence. The probability P (x) of phase switching at the next time step, given
the current position x, can be computed with the stochastic model. “Warning zones” can be
constructed in state space by computing contour lines along which P (x) is constant. These
zones follow and contain the basin boundaries. When data fall within the warning zones, the
observer is informed that a cycle irregularity is likely to occur and can act accordingly. In
this paper, we have defined the warning zones using the 10% contours, i.e., where a greater
than 10% chance of phase switching is predicted. A more conservative approach would use
a smaller contour value (and hence a wider zone around the basin boundaries). The actual
contour value chosen is subjective and depends on the acceptable risk level in the particular
application.

Dynamical systems approaches are powerful tools for understanding biological systems.
Situation specific applications of model-based methods, including the one presented in this
paper, require constructing a model in whose accuracy one has confidence. During the last
few decades, rigorous connection of mathematical models with population data has become
possible for several laboratory systems (see, for example, Bjørnstad and Grenfell [2], Cushing
et al. [9], Fussmann et al. [21], and the references cited in section 4), but quantitatively accurate
models for field populations are still rare [29]. Until reliable models become more common
and established in ecology, there will be a need for nonparametric methods. An interesting
and important open question is whether nonparametric versions of the method presented in
this paper can be constructed when good data but no structural models are available.
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