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Abstract Marine birds and mammals move between various habitats during the
day as they engage in behaviors related to resting, sleeping, preening, feeding, and
breeding. The per capita rates of movement between these habitats, and hence the
habitat occupancy dynamics, often are functions of environmental variables such
as tide height, solar elevation, wind speed, and temperature. If the system recov-
ers rapidly after disturbance, differential equation models of occupancy dynamics
can be reduced to algebraic equations on two time scales. Identification of envi-
ronmental factors that influence movement between habitats requires time series
census data collected in both the absence and presence of disturbance.

Keywords Akaike information criterion · Animal behavior · Differential
equation model · Environmental forcing · Time-scale analysis

1. Introduction

1.1. General

Animals move from habitat to habitat during the day as they engage in various be-
haviors related to feeding, resting, and breeding. The timing of the transitions be-
tween habitat patches often depends on exogenous conditions. This is particularly
true for marine birds and mammals, whose movements typically are influenced by
environmental variables such as time of day, tide height, current speed, heat in-
dex, and wind speed (e.g., Delius, 1970; Galusha and Amlaner, 1978; Schneider
and Payne, 1983; Stewart, 1984; Thompson et al., 1989, 1997; Watts, 1992; Henson
et al., 2004; Hayward et al., 2005; Damania et al., 2005).

When temporarily disturbed by predators or humans, the abundance and dis-
tribution of marine animals in a system of habitat patches may recover rapidly
relative to the rate of change of environmental variables (Henson et al., 2004;
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Hayward et al., 2005; Damania et al., 2005). That is, the environment may be as-
sumed to remain constant while the system returns to its predisturbance state. Such
a system is said to operate on two time scales, the fast time scale of the recovery,
and the slow time scale of the environmental variables. The abundance dynam-
ics during recovery are known as “transient,” and the dynamics after recovery are
called “steady state.” Note that steady state dynamics are not necessarily equilib-
rium dynamics; they can also be periodic or aperiodic.

In this paper we show that the identification of environmental correlates for
movement between habitat patches requires data collected both in the presence
and absence of disturbance. In particular, environmental cues for movement can-
not be determined uniquely if data are collected only during steady state dynamics.

1.2. Theoretical

Parameter estimation for a mathematical model generally requires data collected
during both transient and steady state dynamics. For example, consider an au-
tonomous linear model

dx
dt

= −ax + b (1)

of a single habitat patch, where x(t) is the occupancy at time t and the coefficients
a, b > 0 are unknown constants to be determined from census data. The steady
state is the equilibrium xe = b/a. Suppose the habitat suffers a disturbance (after
which we set t = 0) such that the postdisturbance habitat occupancy is x (0) = x0 $=
b/a (Fig. 1). Elementary techniques from differential equations yield the particular
solution

t0 = 0

x0

b/a

transient

steady statedisturbance

(recovery)

Fig. 1 Dynamics of Eq. (1) with a disturbance at time t = 0.
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x(t) = (x0 − b/a)e−at + b/a. (2)

The first term of the solution (2) describes the transient dynamics; the second term
describes the steady state (in this case equilibrium) dynamics. As t increases, the
transient dynamics die out and the second term takes over. If the transients die
out quickly enough, census intervals may miss most transient effects due to system
disturbances, so that data are collected only during steady state dynamics when
x(t) ≈ b/a. In this case the ratio b/a can be estimated from the data, but the indi-
vidual parameters a and b are not uniquely determined. If, on the other hand, data
are also collected immediately after disturbance, then the exponential rate a of re-
turn to steady state can be estimated from (2). If both b/a and a are known, then
the parameter b can be determined as well. The point is that parameter estimation
requires data collected during both transient and steady state dynamics.

In this paper we consider nonautonomous linear models of habitat patch
dynamics in which the coefficients are unknown functions of environmental vari-
ables, to be determined from census data. In particular, we consider a popula-
tion or other group in which individuals move among n censused habitat patches
during the day, and where the per capita flow rates ri j from habitat j to habitat
i (i $= j) are functions of environmental variables. For example, the per capita
flow rate from habitat 2 to habitat 1 might be proportional to tide height T(t) and
wind speed W(t), that is, r12(t) = α12T(t)W(t), where α12 > 0 is a constant. If we
lump all noncensused locations into an (n + 1)st “habitat patch,” then there are
n(n + 1) = n2 + n per capita flow rate functions ri j (i $= j). Such models have been
used to explain and predict the diurnal abundance dynamics of seabirds and seals
(Henson et al., 2004; Hayward et al., 2005; Damania et al., 2005).

By “a set of environmental determinants” we will mean a set of functions of en-
vironmental variables that determine the dynamics of the system. For example, the
set {ri j } of all per capita flow rate functions is a set of environmental determinants
in the sense that if one knows the identity of, and has data for, all the ri j , then one
can predict the diurnal abundance dynamics for each habitat. Note that the logical
connection between the environmental determinants and the dynamics is that of
mathematical implication rather than scientific causation. That is, environmental
determinants are correlative, but may or may not be causative.

The set {ri j } of environmental determinants has n2 + n members. Two related
questions naturally arise:

1. Is it necessary to know all of the n2 + n per capita flow rate functions ri j in order
to predict the census dynamics?

2. Given census data alone, can one recover the n2 + n per capita flow rate
functions ri j ?

If one’s primary purpose is prediction, for example with the purpose of manage-
ment, then one might hope the answer to question 1 is “no,” in which case the
answer to question 2 is “no” as well. It might be convenient for the purposes of
prediction if there were a set of environmental determinants that was smaller than
the set {ri j }. If, however, one’s primary purpose is to test hypotheses regarding
environmental cues for animal movement, then one would hope the answer to
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question 2 is “yes,” in which case the answer to question 1 is “yes” as well. In this
paper we show that the answers to these questions are time scale dependent.

Section 2 describes the modeling assumptions and general model. Section 3 re-
duces the model on two time scales. We show that steady state dynamics are gov-
erned by a set of n environmental determinants, thus making it impossible to infer
uniquely the identity of the n2 + n flow rate functions ri j from steady state census
data alone. Section 4 illustrates the theory by reviewing three modeling studies
that have been done with field data on marine birds and mammals collected from
systems with n = 1 and n = 2 in the absence of disturbance. In Section 5 we revisit
one of these studies to show how the ri j may be identified uniquely if census data
are collected in the presence, as well as in the absence, of disturbance.

2. Linear model of habitat occupancy dynamics

The model is based on the following assumptions:

(A1) Animals move between n + 1 different habitat patches during the day in di-
rect response to environmental conditions. Habitats 1 through n are specific
locations that can be censused. Habitat n + 1 consists of everywhere not in-
cluded in habitats 1 to n.

(A2) The total number of animals in the system is given by a known function
K(t) that is relatively constant over short periods of time but varies by
season.

(A3) Animals move from habitat j to habitat i (i $= j) at a per capita rate of
ri j (t) = αi j Ei j (t), where Ei j (t) is a function of environmental variables and
αi j > 0 is a constant parameter. In particular, the per capita flow rates are
density-independent. Animals that leave habitat j and return directly to
habitat j without stopping in another habitat are assumed to have remained
in habitat j during that time. Thus, although we use r j j as a formal variable,
we set r j j = 0 for each j.

(A4) The system returns rapidly to steady state dynamics after perturbation. That
is, after a disturbance, K(t) and all of the Ei j (t) can be considered constant
during system recovery.

Let xi (t) be the number of animals in habitat i at time t . Given (A2), we can
eliminate xn+1 by writing

xn+1(t) = K(t) −
n∑

j=1

xj (t).

The dynamics of the ith habitat for i = 1, 2, . . . , n can be described by

x′
i (t) =

∑
inflow rates −

∑
outflow rates

=
n∑

j=1

ri j (t)xj + ri,n+1(t)



K(t) −
n∑

j=1

xj



 −
n+1∑

j=1

r ji (t)xi .
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Our model is therefore a nonautonomous n-dimensional linear system of the
form

x′(t) = A(t)x + b(t), (3)

where

x =




x1
...

xn



 , b =




r1,n+1 K

...
rn,n+1 K



 ,

and

A=





r11 − r1,n+1−
∑n+1

j=1 r j1 r12 − r1,n+1 · · · r1,n − r1,n+1

r21 − r2,n+1 r22−r2,n+1−
∑n+1

j=1 r j2 r23−r2,n+1 r2n − r2,n+1

...
. . .

...

rn1 − rn,n+1 rn2 − rn,n+1 · · · rnn−rn,n+1−
∑n+1

j=1 r jn




.

(4)

Models of this form have been used to predict the diurnal abundance dynamics
of seabirds loafing on a pier (n = 1) (Henson et al., 2004), explain haul-out dy-
namics in seals (n = 1) (Hayward et al., 2005), and model the diurnal movements
of seabirds among four habitats at a Washington colony (n = 1, 2, 3) (Damania
et al., 2005).

3. Two time scales

In general, a solution formula for Eq. (3) cannot be found, since the per capita flow
rates ri j (t) = αi j Ei j (t) are functions of environmental variables which themselves
may have no closed formula. Given assumption (A4), however, it is possible to
construct closed algebraic formulas that approximate both the transient and steady
state dynamics of the system. We first derive an equation for the steady state, and
then consider the transient dynamics. Because the mathematical techniques are
standard, our derivations will be formal; the details of time-scale analysis are made
precise elsewhere (e.g. Hoppensteadt, 1974; Tikhonov, 1985). We henceforth as-
sume that model (3) has been nondimensionalized so that the time-scale results
will not depend on the units in a particular application. We also assume that the
matrix A(t) in Eq. (4) is invertible for all t .

Let t = 0 correspond to a disturbance. Suppose t = 1 corresponds to the time
at which system recovery can be considered complete. (This change of variables
is accomplished by normalizing the original time variable by the recovery time,
producing a dimensionless quantity t .) Given assumption (A4), there is an ε > 0
with ε '1 such that the entries of x′(t) are large relative to the entries of A′(t)
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and b′(t) for 0 < t < ε. This “inner boundary layer” 0 < t < ε characterizes the
time of rapid change near the initial condition, that is, the initial part of the system
recovery during which the environment can be considered constant.

3.1. Steady state: dynamics in the absence of disturbance

Define new state variables and coefficient functions by

y(t) = x
(

t
ε

)

A(t) = A
(

t
ε

)

b (t) = b
(

t
ε

)
.

Then

y′ (t) = 1
ε

x′
(

t
ε

)

= 1
ε

(
A

(
t
ε

)
x

(
t
ε

)
+ b

(
t
ε

))
,

and so

εy′ (t) = A(t)y(t) + b (t) .

If t > ε so that y′ (t) is not too large, then since ε is small we have

0 ≈ A(t)y (t) + b (t) .

The “outer approximation” to the solution of (3) is therefore given by

yout (t) = −A
−1

(t)b (t)

for t > ε. In the original variables, the outer solution is

xout (t) = −A−1(t)b (t) (5)

for t > 1.
In the absence of disturbance, the dynamics of system (3) are governed approx-

imately by the algebraic system (5). We can produce formulas for the individual
habitats xi (t) by writing (5) as

Axout = hK,
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where

h = −b/K =





−r1,n+1
...

−rn,n+1



 .

Then by Cramer’s Rule,

xi (t) = det Ai (t)
det A(t)

K(t) (6)

for each i, where Ai (t) is the matrix formed by replacing the ith column of A(t)
by the vector h(t).

The function det Ai (t)/ det A(t) is a function of the per capita flow rates ri j ,

which are in turn functions of environmental variables. The set of n functions of
the form K(t) det Ai (t)/ det A(t) is a set of environmental determinants for the
steady state dynamics of the system. More than one set of flow rates ri j may give
rise to the same set of functions K det Ai/ det A, as we will see in Section 4. Thus,
in general it is not necessary to know all of the n2 + n per capita flow rate functions
ri j in order to predict the steady state census dynamics; it is sufficient to know the
n functions K det Ai/ det A. And, in general the identity of the n2 + n flow rate
functions ri j cannot be identified uniquely from steady state census data alone.

3.2. Transients: post-disturbance dynamics

System (3) can be written as

x′(t) = A(εt)x(t) + b(εt).

When 0 < t < ε, we can approximate system (3) with the autonomous equation

x′(t) = A(0)x(t) + b(0)

= A(0)x(t) + b(0). (7)

The “inner approximation” to the solution of (3) is therefore given by the solution

xin(t) = #(t)#−1(0)[x(0) + A(0)−1b(0)] − A(0)−1b(0) (8)

of Eq. (7), where #(t) is the fundamental solution matrix of the associated homo-
geneous equation x′(t) = A(0)x(t).

Immediately after a disturbance, the dynamics of system (3) are governed ap-
proximately by the algebraic system (8).

4. Steady state examples from field ecology

We now illustrate the theory by reviewing three examples from field data. The first
example, taken from Hayward et al. (2005), features a model of steady state seal
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haul-out dynamics with n = 1. The ratio r21/r12 of the two flow rate functions was
determined, but the individual r12 and r21 could not be determined uniquely from
steady state data alone. The second example, taken from Henson et al. (2004), is
a steady state model of seabird loafing behavior with n = 1. The third example, a
steady state seabird model with n = 2 from Damania et al. (2005), is included to
illustrate the theory in two dimensions.

4.1. Example 1: harbor seals with n = 1

Hayward et al. (2005) modeled the diurnal haul-out dynamics of harbor seals
(Phoca vitulina) at Protection Island National Wildlife Refuge, Washington. The
differential equation model was

dx
dt

= α12 E12(t)(K(t) − x) − α21 E21(t)x,

where x(t) is the number of seals hauled out on the north beach of Violet Point
at hour t , r12 = α12 E12(t) is the per capita flow rate of seals to the beach, r21 =
α21 E21(t) is the per capita flow rate of seals away from the beach, and K(t) is the
total number of seals that may choose to haul out. See Hayward et al. (2005) for
the functional form of K(t). Under the assumption of two time scales, the outer
solution

xout(t) = K(t)

1 + α21 E21(t)
α12 E12(t)

= K(t)
1 + αE(t)

(9)

of the differential equation was used as the general model for steady state haul-out
dynamics, where α = α21/α12 and E(t) = E21(t)/E12(t).

An array of specific hypotheses was posed regarding the identity of E(t), giv-
ing rise to a suite of alternative models of the form (9). Hourly census data col-
lected in the absence of disturbance were used to parameterize each of the com-
peting models, and the Akaike Information Criterion (AIC) (Burnham and An-
derson, 2002) was invoked to choose the best one. The best model was the one
with

E(t) = E21(t)
E12(t)

= [C(t)]a

[T(t)]b , (10)

where T(t) and C(T) are the nondimensionalized tide height and current, respec-
tively, with 1 ≤ T(t), C(t) ≤ 2,and α = 2.607, a = 2.737, and b = 4.014. Of course,
Eq. (10) does not imply that E21 = Ca and E12 = Tb.

Hayward et al. (2005) did not have census data representing recovery after dis-
turbance. Hence, the identity of the individual functions E21 and E12 could not be
inferred from the census data alone. Hayward et al. posed three possibilities

(H1) E21 = 1
Tb and E12 = 1

Ca
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(H2) E21 =
√

Ca

Tb and E12 =
√

Tb

Ca

(H3) E21 = Ca and E12 = Tb,

and proposed to collect census data at small time intervals following disturbances
in order to test which possibility was correct.

4.2. Example 2: seabirds with n = 1

Henson et al. (2004) modeled the diurnal abundance dynamics of loafing
Glaucous-winged Gulls (Larus glaucescens) on a pier at Protection Island National
Wildlife Refuge, Washington. They found that the number of gulls x(t) on the pier
at time t could be modeled by the differential equation

dx
dt

= α
T(t)
S(t)

(K(t) − x) − 1
α

S(t)
T(t)

x, (11)

where T(t) and S(t) were the nondimensionalized tide height and solar elevation,
K(t) was the total number of birds in the system, and α > 0 was a parameter. See
Henson et al. (2004) for the functional form of K(t).

The data used to parameterize and validate model (11) were collected hourly;
counts occuring less than 30 min after a disturbance were eliminated from the data
set (Henson et al., 2004). Henson et al. noted that recovery after disturbance was
rapid (less than 30 min), and that the steady state dynamics of both model (11) and
data were well approximated by the outer solution

xout(t) = K(t)

1 + 1/α
α

S(t)/T(t)
T(t)/S(t)

= K(t)

1 + 1
α2

(
S(t)
T(t)

)2 . (12)

In fact, however, any differential equation of the form

dx
dt

= α12 E12(t)(K(t) − x) − α21 E21(t)x (13)

on two time scales with

E21(t)
E12(t)

=
(

S(t)
T(t)

)2

(14)

and

α21

α12
= 1

α2 (15)

would have produced the same steady state Eq. (12). This begs the question of
whether the particular structure of differential equation model (11) as given in
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Henson et al. (2004) was functionally correct. Were the per capita flow rates really
proportional to E12 = T/S and E21 = S/T, or might they have been some other
combination yielding the same ratio (14), for example E12 = T2 and E21 = S2?
According to the theory, disturbance data are required in order to answer this
question. We will return to this example in Section 5.

4.3. Example 3: seabirds with n = 2

Damania et al. (2005) modeled the diurnal distribution of loafing Glaucous-winged
Gulls as they moved between a pier, a marina, and elsewhere. The differential
equation model was

dx1

dt
= α12 E12x2 + α13 E13(K − x1 − x2) − α21 E21x1 − α31 E31x1

dx2

dt
= α21 E21x1 + α23 E23(K − x1 − x2) − α12 E12x2 − α32 E32x2,

where x1(t) and x2(t) represent the number of gulls on the pier and in the marina,
respectively, at hour t . The value of K was assumed constant. Here

A =
(

−r13 − r21 − r31 r12 − r13

r21 − r23 −r23 − r12 − r32

)

,

where ri j = αi j Ei j (t). The outer solution xout is given by

x1 = K

1 +
[

(r21r13+r21r23+r31r23)+(r12r31+r21r32+r31r32)
r12r13+r12r23+r13r32

] (16)

x2 = K

1 +
[

(r12r13+r12r23+r13r32)+(r12r31+r21r32+r31r32)
r21r13+r21r23+r31r23

] .

The best model selected from a suite of biologically reasonable alternatives had
per capita flow rates

r12 = α12
hour

temp2 ; r13 = 0; r21 = α21temp3; r23 = α23temp2 · hour (17)

r31 = α31
sun3

tide3 ; r32 = α32
1

temp2 · tide
,

where hour , temp, sun, and tide were the nondimensionalized hour of the day,
temperature, solar elevation, and tide height, respectively.
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During model selection and parameterization, it was obvious that the inverse
problem was not well-posed; that is, many sets of parameters (and various combi-
nations of environmental variables) could give rise to similar model predictions.

5. Identifying environmental determinants with disturbance data

In this section we tentatively extend the analysis of Henson et al. (2004) as de-
scribed in Example 2 by attempting to identify uniquely the flow rate functions of
seabirds to and from the pier. To do this, we collected data from eight controlled
pier disturbances during the summer of 2004.

The disturbances were conducted at a variety of combinations of solar elevations
and tide heights. Each disturbance involved two researchers, a “disturber” and an
“observer.” The observer filmed the disturbances with a digital video camera from
a blind atop a 33-m bluff at least 100 m from the pier. Before each disturbance, the
observer started the video recorder, counted the number of birds on the pier, and
signaled to the disturber below. The disturber then walked onto the pier, causing
some, but not necessarily all, of the birds to take flight. The disturber remained
on the pier until the disturbed birds, many of which initially circled overhead, had
dispersed to other locations. The disturber then walked off the pier, and at this
instant the observer noted the number of birds remaining on the pier. The time
at which the disturber left the pier was taken to be t = 0, the initial time for the
recovery, and the number of birds on the pier at time t = 0 was taken to be the
initial condition x0 for the recovery. The observer continued to videotape the pier
until the occupancy had recovered to at least 75% of the original occupancy prior
to the disturbance (this typically required less than 20 min). The beginning of the
recoveries (t = 0) occurred at 19:44:40 on 6 June, 18:30:00 on 28 June, 13:05:05 on
11 July, 07:01:24 on 13 July, 15:02:11 on 14 July, 14:01:26 on 15 July, 17:02:40 on
15 July, and 09:59:10 on 16 July, 2004, Pacific Standard Time (PST).

The videos were used to identify each time during the recovery at which a bird
arrived at or departed from the pier. These data were then used to construct
“recovery time series” for the numbers of birds on the pier at each minute for
5 min following the disturbances (Fig. 2). We used the following procedure to
identify E12(t) and E21(t) from the collection of recovery time series, given that
E21/E12 = S2/T2 (see Example 2):

(1) The inner solution of Eq. (13) was written as

xin(t) =



x0 − K(0)

1 + α21 E21(0)
α12 E12(0)



 e−[α12 E12(0)+α21 E21(0)]t + K(0)

1 + α21 E21(0)
α12 E12(0)

= (x0 − xout(0)) e−α12[E12(0)+(1/α2)E21(0)]t + xout(0), (18)

where

xout(0) = K(0)

1 + 1
α2

(
S(0)
T(0)

)2 ,
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Fig. 2 Two of the recovery time series from the pier disturbances. The circles are census counts
at each minute during the first 5 min of recovery after disturbance. The curves show the fitted
model predictions. A. Time series from 6 June 2004 at 19:44:40 PST. The nondimensionalized tide
and solar elevation were 1.97 and 1.05, respectively (a high tide at sundown). B. Time series from
14 July 2004 at 15:02:11 PST. The nondimensionalized tide and solar elevation were 1.85 and 1.74,
respectively (a fairly high tide in mid-after-noon).

x0 is the initial number of animals (at t = 0, the beginning of the recovery), and
1/α2 = α21/α12 (see Example 2).

(2) The value of α estimated in Henson et al. (2004) was substituted into Eq. (18).
The values of x0, T (0) , S (0) , and K (0) were known (and different) for each
recovery time series. The unknown quantities in Eq. (18) were therefore α12,

E12 (0) , and E21 (0).
(3) We made three a priori hypotheses regarding the identity of E12(t) and E21(t):

(H1) E12 = T
S

(
and hence E21 = S

T

)

(H2) E12 = 1
S2

(
and hence E21 = 1

T2

)

(H3) E12 = T2 (
and hence E21 = S2) .

The first hypothesis implies that the gulls responded to both tide height and so-
lar elevation (or correlates thereof), whether on the pier or away. The second
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Table 1 Goodness-of-fit and model selection.

AIC $AIC R2

(H1) 149 12 0.91
(H2) 137 0 0.93
(H3) 159 22 0.89

implies that birds on the pier responded to tide height, while those away from
the pier responded to solar elevation. The third implies that birds on the pier
responded to solar elevation, while those away responded to tide height.

(4) From the three hypotheses (H1)–(H3), we formed three alternative models,
also designated (H1)–(H3):

(H1) xin(t) = (x0 − xout(0)) e−α12[T(0)/S(0)+(1/α2)S(0)/T(0)]t + xout(0)

(H2) xin(t) = (x0 − xout(0)) e−α12[1/S2(0)+(1/α2)1/T2(0)]t + xout(0)

(H3) xin(t) = (x0 − xout(0)) e−α12[T2(0)+(1/α2)S2(0)]t + xout(0),

where

xout(0) = K(0)

1 + 1
α2

(
S(0)
T(0)

)2 .

(5) Model (H1) was fitted to the entire collection of recovery time series by esti-
mating the free parameter α12 via the method of nonlinear least squares. The
appropriate experimental values of x0, T (0) , S (0) , and K (0) were used for
each time series. Note that the fitted (H1) predictions in Fig. 2 do not pass
through the data of the two recovery time series shown. This is because we did
not fit each time series separately, but rather required model (H1) to fit all of
the recovery time series (with their variety of initial habitat occupancies and
environmental conditions) using the same value of α12. This fitting procedure
was carried out for models (H2) and (H3) as well.

(6) We used the AIC to select the best model from the suite of three alternatives
(Table 1; Fig. 2).

Model (H2) had the highest R2 = 0.93 and lowest AIC = 137. Since the differ-
ence between the AIC for this model and the next best model was $AIC = 12 > 10,
hypothesis (H2) can be considered significantly better than (H1) (Burnham and
Anderson, 2002).

This result supports the functional hypothesis that birds on the pier leave in
response to low tide height, while those away from the pier return in response to
low solar elevation. The result is consistent with a pier-marina-beach-elsewhere
model (n = 3) presented by Damania et al. (2005), in which flows from all three
loafing habitats into the elsewhere category were driven primarily by a low tide. It
is also consistent with other studies that suggest gulls leave loafing habitats at low
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tide, probably as a result of increased food availability (Patterson, 1965; Drent,
1967; Delius, 1970; Galusha and Amlaner, 1978; Wondolowski, 2002).

More than eight recovery time series are needed to make a convincing case that
hypothesis H2 identifies the correct per capita flow rates. We plan to record at least
12 more disturbances in the summer of 2006.

6. Discussion

Abiotic components of the environment can play crucial roles in determining the
distribution and abundance of organisms. An understanding of these roles is useful
to biologists involved in everything from the management of wildlife populations
to the control of vector-borne diseases.

Marine animals rely heavily on environmental cues such as time of day, tide
height, solar elevation, and current velocity as they move from habitat to habitat
to meet their functional needs (Henson et al., 2004; Hayward et al., 2005). There
are two types of environmental variables. Some, such as tide height and solar el-
evation, are largely deterministic, and can be obtained as long-range predictions.
Others, such as wind speed and temperature, can be obtained only as historical
measurements or as short-range predictions. The predictability of the system de-
pends on how much of the data variability can be explained by using only deter-
ministic Ei j .

Some aggregations of marine birds and mammals recover quickly following dis-
turbance. This introduces two time scales, the time scale of recovery and the time
scale of environmental variables. Such a system depends only on the current con-
dition of the environment; it is not necessary to integrate over the past in order to
compute the solution at time t . Ecologically, this implies that, at least at the scale
of a group of animals occupying the same habitat, behavior change occurs simply
and directly in response to environmental change, irrespective of historical con-
tingencies. This is not true, however, at the scale of the individual. For example,
preceding conditions demonstrably alter the probabilities of succeeding behaviors
in individual Glaucous-winged Gulls (Hayward et al., 1977; Amlaner et al., 1978).
From a modeling perspective, the algebraic equations generated by the time scale
analysis allow a large number of hypotheses to be tested quickly, since parameter
estimation reduces to nonlinear curve fitting. An important outcome of this type of
analysis is that wildlife managers can use algebraic equations instead of differential
equations to predict system dynamics. In a system that operates on two time scales,
however, both transient and steady state data are required to identify uniquely the
environmental determinants and parameters.

Several caveats are in order. The first is that a model cannot be expected to
predict recovery from disturbance if the main factors influencing recovery are not
included in the model. Animal behavior can be complicated, and recovery dynam-
ics might depend on factors (such as social facilitation or Allee effects) that play
little role in the steady state dynamics. That is, recovery may involve more than the
“normal” ebb and flow of animals between habitats. Indeed, we observed such a
phenomenon in our experiments. When we first began recording disturbances, the
disturber left the pier immediately after the birds flew. Some of the disturbed birds
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flew away to other areas of the colony, but others simply circled overhead until the
disturber had gone, and then quickly dropped back onto the pier. This created a
very fast initial recovery, followed by a relatively slower recovery that was due to
the normal coming and going of birds. Because the model did not incorporate the
mechanism of disturbed animals waiting to reenter the habitat, it could not predict
the fast initial recovery. Thus, we revised the experimental protocol so that the
disturber remained on the pier until the birds circling overhead had dispersed to
other locations. In this way we tried to ensure that the recovery was due to the
environmentally-driven flux between habitats.

A second caveat is that the experimental procedure for one habitat as outlined in
Section 5 may not be feasible for a system of habitats, or for some types of habitats.
Furthermore, we have found that recording and analyzing natural disturbances is
difficult. For example, the times of the disturbances are not known in advance, and
it is often unclear when the disturbance is over.

A final caution is that the inner solution xin(t) only describes dynamics imme-
diately after a disturbance, that is, for the inner boundary layer 0 < t < ε ' 1.

For transient times outside of the inner boundary layer, both time scales become
important, and the solution of (3) is approximated by the sum of the inner and
outer solutions, corrected by a “matching term” (Lin and Segel, 1988) to eliminate
overlap.

Human alteration of natural systems has exerted increasing pressures on animal
populations. Resource managers must respond to these pressures with ever more
sophisticated tools. The modeling technique developed here could allow managers
to identify more precisely the environmental factors influencing animal habitat
occupancies, which could lead, in turn, to more effective management strategies.
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