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The Tribofiunt (flour beetle) competition experiments conducted by Park have been bi ghly influential in
ecology. We have previously showa that the dynamics of single-species Tribolium populations can be
well-described by the discrete-time, 3-dimensionaj larva—pupa-adult (LPA) mode}. Motivated by Park’s
experiments, we explore the dynamics of a 6-dimensional “comgetition LPA model” consisting of two
LPA models coupled through cannibalism. The model predicts a double-loop coexistence attractor, as
wel as an unstable exclusion equilibrium with a 5-dimensional stable manifold that plays an important
role in causing one of the species to go extinct in the presence of stochastic perturbations. We also present
4 stochastic version of the model, using binornial and Poisson distributions to describe the aggregation of
demographic events within life stages. A novel “stochastic outcome diagram,” the stochastic counterpart
to a bifurcation diagram, summarizes the model-predicted dynarnics of uncertainty on the double-loop.
We hypothesize that the model predictions provide an explanation for Park’s data. This “stochastic
double-loop hypothesis™ is accessible to experimental verification.

Keywords: Species competition; Invariant loop; Stochasticity; Tribolfum

L. Introduction

Ecologists have long pondered the problem of species competition. Conventional ecological
wisdom says that if two species occupy the same habitat and use the same resources, then ope
species will outcompete the other. This “competitive exclusion principle” {8,10] is a
prediction of the simple mathematical models of Lotka [14] and Volterra [22]. The need to
test these predictions experimentaliy led to a nwmber of laboratory studies, the most
influential of which are the experiments of Gause {3] on yeast and protozoa and a long series
of studies by Thomas Park and his students at the University of Chicago using two species of
flour beetles belonging to the genus Tribolium [15,9]. )
The Tribolium competition experiment of Park [ 18] is a treasure of data. There were a total
of 24 treatments involving 8 genetic strains, 16 two-species competitive treatments and 8
single species treatments, cach with 10 replicates for a total of 240 individual flour beetle
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We will use the term “within the axis” when referring 1o scenatios involving only one
of the two species. Thus we will refer to equilibria of the form (LT,PT,A’;,O, 0,0) with
Li,P,A} >0 as “horizontal-axis equilibria,” and equilibria of the form
(0,0,0,L;, P;, A} with L3, P5,A} >0 as “vertical-axis equilibria” The competition
LPA map has a unique horizontal-axis equilibrium {4] provided

b, b=y,

= ()
Hay

and a unique vertical-axis equilibrium provided

b LMz 3)
a2

To study the stability of an axis equilibrium with respect to invasion by the second
species, we consider the Jacobian matrix of the competition LPA map. The Jacobian
evaluated at (L], P},4},0,0,0) is a 6 X 6 matrix with a 3 X 3 block of zeros in the
lower left corner. This means that the eigenvalues of the 6 X 6 matrix are the
eigenvalues of the 3 X 3 block in the upper left comner and the eigenvalues of the 3 X 3
block in the lower right corner. We assume that the equilibrium is stable in the absence
of a second species, and thus that the three eigenvalues of the upper left block are all
within the unit circle. The three eigenvalues of the lower right block will then determine
if an equilibrium that is stable within the axis will remain stable in the presence of

small numbers of a second species. The lower right block is

4] 0O bye =CapL)=ce 214}
F 0 Y
0 L& "oz - Ha2

with characteristic polynomial

N = (1= HapA® = bl = payp)e ot ~euartma; “

Satisfaction of the Jury conditions {12} provides a necessary and sufficient condition that
all three eigenvalues lie within the unit circle in the complex plane, and thus provides a
sufficient condition for the stability of the axis equilibrium.

THEOREM 1 A horizontal-axis equtlibrium (L’;,P:‘,A:,O, 0,0) is stable whenever

bg 1 - JLLl,ze‘“Cci,ElL;"‘“(Cea,Ql -i-cpa,zt)n‘l: < 1. } (5)
Ha2

Proof Define
@ = by(l — pyq)e ~Cuky ~(CeaniFapan) Ay

Then the Jury conditions are equivalent to:

() e > &
(i) 2 — Mg > —o
(i) o< §
) 11~ a2} > (1 = paz)al
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Assume that (i) is true, 50 that 0 < @ < gy . Since gz = 1, (i) is trivial and (i) follows
from (i). Since 0 < o < 1 implies a? < 1, the absolute values on the both sides of (iv) can be
removed. This reduces (iv) to a quadratic inequality in «:

o 4 (1 = pap)a— 1 < 0.
Since by assumption 0 < & <<y, the above inequality holds if
phy (0= padptar = 1 =0

which reduces (o g, = 1; thus (iv) follows from (i). Thus, all of the Jury conditions are
satisfied if (and only if) pa2 > «, that is, if and only if

bgl b f"l‘l,ze"“-I-.‘,Z%LT"“(Cw,Zl‘I’Cpa‘Zi)*q.l < 1,
Mo
£l

A similar argument shows that the vertical-axis equilibrium (0,0,0,L;, P, A} is stable
whenever

bl 1 - ,UJJ,] e"“CeLnL;“(Ceo,ll';‘cpa,l'l)fi; < 1 (6)
a1
As expected, raising inter-specific competition leads to stable extinction states which implies
competitive exclusion.

3. Population time series

The time series records that we examine were obtained from the experiment conducted by
Park [18). In the experiment, single- and mixed-species cultures of four genetic strains of
Tribolium confusum Duval (labeled bl, bIl, bIIl, bIV) and four genetic strains of Tribolium
castaneum Herbst (labeled cl, ¢l clfl, ¢IV) were cultured in shell vials with 8 g of standard
medium (95% whole wheat flour and 5% dried brewer’s yeast by weight) and maintained in
an incubator at 29°C, 70% relative humidity. Single-species populations were initiated with
8 adults (4 males and 4 females) while the mixed-species populations were initiated with
4 adults (2 males and 2 females) of each species. At 30-day intervals the number of adults
were counted. Following the adult census all life stages (eggs, larvae, pupae and adults) were
returned to fresh medium. The single-species cultures were maintained for 870 days.
The mixed-species cultures were maintained until one or the other species went extingt.
The longest culture was continued for 1740 days or 4.8 years.

Qur objective was to establish a version of the two-species LPA competition model that
would serve as a hypothesis to interpret the observed population time series. We focused, in
particular, on the mixed-species culture involving genetic strain bll of 7. confusum and
genetic strain ¢IV of T. castanewm. The unusual time series pattern (see the top panel of
figure 5) was called “recalcitrant” by Park {18]. We used information from several sources to
obtain parameter values: first, the statistical analyses of time series data on I. castaneum 6],
second, assay experiments on fecundity, fertility, rate of development and adult longevity of
the two species [17] and, third, assay experiments on the cannibalistic interactions of adults
eating eggs, adults eating pupae and larvae eating eggs of the two species [19]. The
parameter values are given in table L '
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Table 1. Parameter values.
By == 10 by =10 pay =02 Hyp =02 oy = 0.14 Pag =0.14
Corpy = 0.012 Cel 2z == 00{)3 Ceat] (.066 Cea 2z = 0015 Cpa,1t == 0.064 Cpa2z = 0.04
Cat 12 = 0.0 Cota] == 0.062 Ceg,12 = 0.0i1 Crg 2t == 0.007 CW,EZ w017 Cpg;,zl =2 (1.03

The two-species competition model has 18 parameters, any one of which could serve as a
bifurcation parameter. We chose to examine the biological consequences of the changing the
miagnitude of the interspecific coefficient of egg eating by the larvae of species one on species
A bifurcation diagram is given in the top two panels of figure 1.
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A stochastic counterpart to the bifurcation diagram, which is discussed fully in a later
section, is displayed in the bottom panel of the figure.

3.1 Coexistence double-loop

The two top panels of figure 1 show bifurcation diagrams (for the parameters in table I) for

the total population of species one and species tWo as Cq 2 varies from 0 to 0.10. There is a .

vertical-axis equilibrium at
(0, 0,0, 114.04, 91.23, 143.14),
with

by L= eMCcI,IIL;"{Cw.lz+cpa|i2}A; = (.20 < ]
He,t

implyihg asymptotic stability. Note that the parameter ¢y has no effect on the asymptotic
stability of this equilibrium, so this extinction state will act as an attractor regardiess of what
happens as we vary <.z

The stable axis equilibrium (0,0,0,114.04,91.23,148.14) will exist in the presence of a
second attractor. The nature of the second attractor depends on the value of the bifurcation
parameter ¢,; 2. Reading from right to left in figure 1, we can identify the following sequence
of changes in the second attractor. A coexistence two-cycle is the second atiractor if
0.092 < ¢y < 0.17. The second attractor is a coexistence double-loop for 0.061 <
Cerzl < 0.092. As cpy9y drops through 0.061, the double-loop vanishes, leaving the vertical
axis equilibriuzm as the only attractor.

Figure 2 shows the double-loop coexistence attractor for caz = 0.062, and figure 3 displays
the corresponding time series for adults (top panel) and larvae (bottom panel) of both species.
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Figure2. Deterministic double-loop using the parameter values in table I Initial condition is the same as that in the
Park experiment, namely, (0,0,4,0,04). After roughly ten time steps the orbit moves onto the attractor.
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Figure 3. Top panel. Adult numbers of species one and species two associated with the double-loop in figure 2.
Bottom panel. Larval time series of species one and species two associated with the coexistence double-loop in fipure
2. Notice that the two-cycle oscillations in larval numbers are synchronous,

Our working hypothesis is that this is the underlying deterministic skeleton for the recalcitrant
mixed species culture of 7. confusum strain bll and T. castaneum strain cIV [18].
The situation on the horizontal axis is somewhat complex, A two-cycle with coordinates

(936, 247.55, 45.48, 0, 0, 0), (309.43, 7.49, 52.59, 0, 0, 0)

acts as an attractor in the absence of species two. A horizontal-axis equilibrium
(98.36,78.69,40.93,0,0,0) is unstable within the axis. The Jacobian evaluated at this unstable
equilibrium has five eigenvalues inside the unit circle

Arg = —0.0026 + 0.06754i

¥

Az = —0.1586
Aq = (.86528
As = 0.59352
and one eigenvalue
A= —1.1219

outside the wvnit circle. The equilibrium is therefore a saddle with a 5-dimensional stable

manifold and 1-dimensional unstable manifold. The eigenvector associated with Ag is (0.814, -
—0.38, 0.026, 0,0,0); hence the 1-dimensional unstable manifold lies within the horizontal

axis. As a result, this equilibrium, though unstable, exerts a strong pull on orbits, even those

with initial conditions far from the horizontal axis.
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Figure 4. Time series displaying the influence of the 5-dimentional stable manifold associated with the unstable
2xis equilibrium (98.36,78.69,40.93,0,0,0} of species one. The Initial condition is (37,33,15,13,21,71).

Figure 4 shows a time series for larvae and adults of both species with an initial condition
of (37,33,15,13,21,71), which is far from the unstable axis equilibrium
(98.36,78.69,40.93,0,0,0), but very close to the stable manifold of this horizontal-axis
equilibriom., We will sce that this unstable equilibrium (with its 5-dimensional stable
manifold and 1-dimensional unstable manifold) plays an bmportant role in the extinction of
species two in a stochastic version of the competition model.

3.2 Stochastic double-loop hypothesis

Probabilistic variation, in such fundamental biological processes as the number of eggs a
beetle oviposits and egg survival in the presence of egg-eating larvae and adults, is part of
fiour beetle dypamics. The aggregation of these demographic events within the life stages
was described by the binomial and Poisson distributions in a single species model [6]. That
stochastic formulation can be easily extended to the two-species case.

In the stochastic model, the system variables Ly g1, P11, Aretts Loges Posiyyand Ap s
are random variables whose probability distributions are dependent upon the values of
the system variables realized in time ¢. In what follows, upper case letters are used to denote
the random variables and lower case letters the realized values that the random variables are
conditioned upon.

The random variable describing the number of L;-stage animals attime 7 + 1 isa compound
process: a random number of potential recruits is produced (with conditional mean byay ), and
each potential recruit subsequently undergoes a survival process where the conditional survival
probability, e ~Celthy— Ceanai s~ b —Can®2s  depends on the system state variables b by ar,
and az,;. We assumed that the number of potential recruits has a Poisson distribution with a mean
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of byay,, and that the number of subsequent survivors has a binomial distribution. Thus, the
conditional distribution of Lyt given Ly =1, Loy =1, Ay =ay,, and Agy = ay,
becomes a Poisson distribution with mean b,a Bee ST Gt eaizh ~Cenan, |

The number of Py-stage animals at time -+ 1 is produced by a random survival Process.
Each of the [ 11 larvae are at risk of death with probability 1. Therefore, the distribution of
P14y given Ly, =1, was taken to have a binomial (I ,,(1 - £31)), distribution.

The number of A,-stage animals at time t-+1 1s the sum of two independent survival
processes: recruits from the Pj-stage, denoted Rier1, which survived cannibalism with
probability e ~%e U~ Ga2: 16 hecome adults, and surviving adults, denoted §1 41, which
made the transition from time ¢ to time t+1 with probability 1 — tia1- We assumed a
binomial distribution for both these survival processes.

Similar assumptions were made for species two o produce the following Poisson--
binomial (PB) model for two competing species:

Ly 1 ~ Poisson (byay fe_Ccl.l!lt,l“f-‘m,ll“],r“CcLiziz;“Cca‘IZﬁZ,J)
Py 41 ~ binomial (4,1 — Hii)

R]JMH ~ binomiai (pl,h 8“6"’”"‘&1"“6”“‘]2‘72")

Stee1 ~ binomial (a1, 1~ g ;)

Al,z+} = Ri,:+t + Si,:-H (
7)
IQ’H ~ Poisson (bzazIe—Cel.ulr.:'Cm,ual,f‘“Cd.nfz‘f“cm,zzaz.:}
P41 ~ binomial (5, 1 ~ py5)

Rop1 ~ binomial (py, e ~Graiiu~panazy

S2,041 ~ binomial (a,, 1~ p,7)

Arp) = Rapps + Sa

here ** -~ means “is distributed as.”

The expectation of the stochastic process is the same as the deterministic model (1), but the
stochastic dynamics are confined to the 6-dimensional lattice of non-negative integers {11].
The latter is an important consideration when dealing with population extinction.

A stochastic outcome diagram is a counterpart to a bifurcation diagram that summarizes the
model-predicted, long term outcomes of a stochastic model (see the bottom panel of figure 1).
The frequency of occurrences of five time series patteris, based on the time a species goes
extinct, are identified: the carly or late Joss of species one, the early or late loss of species two and
coexistence. (Extinction of both species is a possibility, but it was never observed in the
experiments orin any of our simulations.) Early elimination was defined as the loss of a speciesin
the time interval 0 < ¢ = 60, late loss in the interval 60 < ¢ < 130, and coexistence as the
presence of both species at 7 > 150, The frequency of each of these events was computed using
the parameters in table 1 for 10000 PB-model realizations for Cet 21 from 0.00 to 0.10 svery
0.0025. The results are presented as a filled area chart, so the height of the fill is the proportion of a
certain outcome. For example, with Carp1 = 001 thereisa predicted early loss of species one in
approﬁimately 85% of the realizations and a late loss of species one in 15% of the runs; species
one is always lost. As c,,,; increases, there is a reduction in the frequency of the early loss of
species one and a corresponding increase in the Jate Ioss of species one. Just beyond the value of
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can = 0.04 there is a qualitative change in the stochastic model-predicted outcomes. For
example, at ¢.2; = 0.055 the model predicts the simultaneous occurrence of all five possible
outcomes. That means that in an experiment with many replicates the forecast is that species one
is lost in 50% of the replicates, species two is lost in 30% and the species coexist in 20% of
the replicates. Deterministically species one is always lost. Stochastically the forecast is
the probability of a particular outcome. This region of the stochastic outcome diagram
corresponds to what Park called a “zone of indeterminism,” a phrase he introduced into ecology
in 1956 [16]. Although in Park’s case he forecast the loss of either species one or species twWo;
coexistence was not predicted by his model.

The traditional bifurcation diagram together with the stochastic outcome graph give us
the opportunity to address a fundamental question of population theory: How do
deterministic forces and stochastic events combine to produce population trajectories? For
example, when cez1 = 0.062 the deterministic orbit with initial condition (0,0,4,0,0,4)
Jeads to species coexistence (figures 2 and 3). However, by time ¢ = 150 in the PB model,
onty 30% of the stochastic realizations lead to coexistence, while 15% result in the of loss
of species one and 55% of the stochastic runs to a loss of species two (see figure 1 bottom
panel). A clue to understanding the interplay of the deterministic forces and stochastic
fluctuations may involve the 5-dimensional stable manifold and the 1-dimensional unstable
manifold of the unstable equilibrium of species one. With an initial stage vector of 4 adults
of each species (Park’s experimental condition) the unstable equilibrivm and its stable and
unstable manifolds have litle influence on the deterministic model orbit. However,
demographic variability, as given in the PB model of species competition, allows for the
possibility that an orbit will be placed by chance near the stable manifold of the unstable
equilibrium and species two will be pulled toward extinction {figures 5 and 6).

The stochastic PB model (7) was used to further investigate the hypothesis that the
5_dimensional stable manifold of the unstable horizontal-axis equilibrium plays a role in the
extinction of species two. If this hypothesis is true, then extinction of species two should coincide
with a “flyby” of the unstable axis equilibrium by species one. To evaluate this hypothesis, we
calculated the Fuclidian distance between the realizations of the stochastic model and the
unstable axis equilibrium for both species:

dry =\ Ly = L)+ (Pre = P (A1, = A7) @)

dz.i = \/‘i’%,r + P?’..,I + A%,: ) &)

where (L}, P},A}) = (98.36,78.69,40.93). We then chose simulations of the PB model with the
initial condition (0,0,4,0,0,4) from the Park experiment which met each of the following
conditions: (1) da, > 20 at =50, {i) doy < 20 at =60, (iil) dz, =0 for ¢ = 100.
These conditions ensured that stochastic extinction events of species two are more or less aligned
in time. We ran the PB stochastic model until 100 realizations had been accumulated that met
these criteria. On the left side of figure 7 ate plotted d; ,and dy  for the first five realizations; the
mean of all 100 realizations are plotted on the right side of figure 7. Whenever species two goes
extinct (dz, — 0), there is a decrease in dy ,, indicating a trajectory that passes near the unstable
axis equilibriumn. Although the exact timing and “nearness” of the flyby varies from one
stochastic realization to the next, it happens in a consistent and predictable manner, lending
support to the hypothesis of the 5_dimensional stable manifold as factor in the extinction of

species two.
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Figure 5. Top panel. Adult data observed in Park ef af (1964,
T confusium siwain bH. Bottom panel. Stochastic model simulation
with the same initia! conditions as in the Park experiment, (0,0,4,0,0,4), using the parameter values given in table 1,
Notice that at time step 48 the two species community, (15,41,19,4,92,74), starts to be drawn toward the unstable axis
equilibrium of species one uader the influence of the stable manifold, The result is the extinction of species two. See
figure 6 for a display of the larval numbers of each species.

Table L, p.160), T castanenm strain cfV and
of adult numbers of species one and species two

4. Discussion

A stochastic double-loop hypothesis is proposed as an explaration for the adult time series
pattern observed in the mixed species culture of strain oIV of T castanewm and strain bl of

T. confusum (figure 5, top panel). A statement of the hypothesis and how it explains the data
are summarized as follows:

L. A coexistence double-loop is the attractor of the deterministic model.

2. Associated with the unstable axis equilibrium (98.36, 78.69, 40.93, 0,0,0) of
T castaneum, are a 5-dimaensional stable manifold and a I-dimensional unstabie
manifold,

3. The deterministic model, for the initial conditions used in the Park experiment, predicts
that the two species will coexist. Coexistence was not observed; . confusum was lost.

4. Probabilistic variation mcorporated into the mode] gives rise to a stochastic double-loop
hypothesis.

In the stochastic model 55% of the realizations resuited in the loss of T corfusum.

6. The proposed explanation of the loss of T, confusum is based on the influence of the stable

and unstable manifolds of the unstable axis equilibrium of 7. castaneum. :

s
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Figure 6. Stochastic model simulation of larval aumbers of species one and species two with initial condition
(0,0,4.0,0,4) showing the influence of the stable 5.dimentional stable manifold. Notice that at time step 48 the two
species commusnity, (15,41,19,4,92.74), starts to be draws toward the unstable axis equilibrium of species one which
resulis in the extinction of species two,

7. Our interprétation of the data is that demographic chance events pushed the two species
culture close to the stable manifold of the unstable axis equilibriurmn, which then resulted
in the two species community being drawn toward the unstable axis equilibrium of
T castaneum with the subsequent loss of T. confusum.

The observed adult time series pattern (figure 5, top panel) is similar to that predicted by a
realization of the stochastic model influenced by the stable manifold (figure 5, bottom panel).
The model-predicted larval time series also reveals the influence of the stable manifold (figore 6).
Repeated simulations of the stochastic model in which 7. confusum goes extinct reveal a
consistent trend whereby the trajectory of the two species system brings 1. castaneum near its
unstable axis equilibrium as T, confusum is lost, lending support to hypothesis that the
5.dimensional stable manifold is a factor in bringing about the extinction of 7. confusum.

Under ideal circumstances, one could explore the stochastic double-loop hypothesis in
more detail with more complete analyses of the experimental data. Following the paradigm
of Cushing et al [4], this would include parameter estirnation and model validation.
Unfortunately, the only source for the Tribolium competition data is the original publication
by Park and his colieagucs {18] which, except for a few replicates, contains only time series
data for the mean number of adults. Larvae and pupae of T. castanewm and T. confusum were
not recorded in the Park experiment. More complete tests of the model, including the double-
loop hypothesis, await further experimentation.

The bifurcation and stochastic outcome diagrams in figure 1 suggest a tentative explanation of
a central feature of the Park experiment [18], namely, “one strairn of T. castanewum (cI) invariably
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Figure 7. Realizations of the stochastic PB model where species two foes extinct within the interval 50 < 1= 100
(dashed lines). The distance of species one from its unstable axis equilibrium (98.36,78.69,40.93} is plotted in the top
two graphs and the distance of species two from the extinction point (0,0,0) is plotied in the lower two greaphs. In the
left panels are five realizations of the stochastic model; on the right are the mean trajectories for 100 stochastic
realizations. Associated with the extinction of species two is a flyby of the unstable axis equilibrium by species one.
See text for additional details.

wins every encounter with 7. confisum;, another strain (clV) usually wins its encousters, while
the two other strains (cIf and cIll) usually lose their encounters.” Retumning to the stochastic
outcome graph, if we associate different values of the bifurcation patameter, .3, with the
genetic strains of T castaneum we obtain an interpretation of the above quotation. With small
values of the bifurcation parameter, the 7. castaneum strains cIl and ¢II1 are forecast to lose their
encounters with the genetic strains of T. confusum; with an intermediate value of Cerz Strain iV
is predicted to sometimes win and sometimes lose its encounters; with a slightly larger value of
Caizr strain ¢l is forecast to invariably win every encounter with each genetic strain of T
confusum. Interestingly, in egg-cating assay experiments, Park and his colleagues [19]
determined the ordering by genetic strain of the rates of 7! castanewm larvae eatin g T confusum
eggstobecll == ¢l <€ cIV < ¢l, which is consistent with the mode) predictions. However, we
recognize that these genetic strains may differ with respect to other parameters and that more
rigorous tests of the model will require additional study.

For the particular set of parameter values that we investigated (table I}, the LPA model
makes a prediction that is different from the predictions based on classical Lotka-Volterra
competition theory, namely, that species coexistence is enhanced when interspecific
competition is sufficiently strong, i.e. Carzr = 0.05. This result is consistent with the
application of the LPA model to the mixed species data of T' castaneum strain ¢IV-a and
T. confusum strain bl [7]. Increased competition in a consumer/resource model has also been
shown to promote species coexistence [21].
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park’s “principle of competitive indeterminacy” stimulated mathematical model builders
to examine the role of chance events in multi-species communities 1, 13, 20. Stochastic
models are increasingly important in the characterization of ecological dynamics {2-4}. In
this paper, we continue fie tradition of using flovr beetles to explore stochastic population
theory by introducing a stochastic outcome diagram which extends the traditional
deterministic bifurcation diagram by summanzing the long term stochastic outcomes. These
two diagrams placed together as in figure 1 provide a more complete picture of the dynamics
than either diagram presented separately.
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