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In previous studies we developed a general compartmental methodology for modeling animal behavior
and applied the methodology to marine birds and mammals. In this study we used the methodology
to construct a system of two differential equations to model the dynamics of territory attendance and
preening in a gull colony on Protection Island, Strait of Juan de Fuca, Washington. We found that
colony occupancy was driven primarily by abiotic environmental conditions, including tide height,
time of day, solar elevation, and wind speed over open water. For birds in the colony, preening behavior
was driven to some extent by abiotic environmental conditions (including time of day, solar elevation,
humidity, and wind speed on the colony), but apparently was driven primarily by local and/or biotic
effects not included in the model. In terms of R2 values, the model explained 65% and 37% of the
variability in colony occupancy and preening data, respectively, as a function of these six abiotic
environmental factors.

1. Introduction

A number of ‘compartmental’ differential equation models have successfully predicted the
behavior of marine birds and mammals as functions of abiotic environmental factors. Henson
et al. [1] and Hayward et al. [2] predicted the dynamics of loafing behavior in Glaucous-
winged Gulls (Larus glaucescens) near a breeding colony on Protection Island, Washington,
and Herring Gulls and Great Black-backed Gulls (L. argentatus and L. marinus, respectively)
near a breeding colony on Appledore Island, Maine, as functions of environmental conditions.
The models explained up to 83% and 47% of the variability in loafing dynamics on Protection
Island and Appledore Island, respectively (R2 = 0.83, 0.47). Hayward et al. [3] modeled haul-
out behavior in harbor seals (Phoca vitulina) on a beach at Protection Island as a function of
environmental conditions with R2 = 0.40. Damania et al. [4] and Moore et al. [5] modeled the
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diurnal occupancy dynamics of a system of habitat patches in and around the Protection Island
gull colony as a function of environmental factors with R2 values up to 0.82. Henson et al.
[6] modeled the same system on two time scales, and studied recovery from disturbances as a
function of environmental conditions. Henson et al. [7] used a system of differential equations
to predict the dynamics of colony occupancy and sleep in the Protection Island gull colony. In
terms of R2 values, the model explained 65% and 52% of the variability in colony occupancy
and sleep data, respectively, as a function of abiotic environmental factors.

In this study we continue the ongoing program of modeling and field observations of the
behavior of marine organisms. Specifically, our goal is to explain and predict the dynamics
of colony attendance and preening behavior in the Protection Island Glaucous-winged Gull
colony during chick-rearing season as a function of environmental conditions.

Colony attendance is constrained by the number of nesting territories within the colony.
Each nesting pair of gulls guards a territory ranging in size from 15 to 30 m2 ([8]; J.G.G.
unpublished data). At least one mate remains on the territory at all times, and both mates
attend the territory at night. Intruding gulls are driven quickly out of territories; hence only
resident birds attend the colony. Gulls leave the colony to loaf, bathe, drink, feed, and acquire
food for chicks.

‘Preen’ is defined as the state in which a sitting or standing gull pulls feathers through its
bill and/or moves the head in a smoothing motion over the body [9]. Preening is important for
maintenance of feathers for flight and thermoregulation. Gulls have been shown to preen more
frequently following return flights to territory than at random times of territory occupancy [10].

We constructed a system of two differential equations to model colony occupancy and preen.
In section 2 we derive a general deterministic model of animal behavior. We also provide a
stochastic version of the model that is needed for model parameterization. In section 3 we
use this general model as a basis on which to derive our Colony–Preen model. Section 4
describes the data collection procedure. In section 5 we connect the Colony–Preen model to
the collected data and describe the results. Section 6 provides a discussion of the results and
lists a number of important caveats. For an in-depth perspective on the methodology used in
this study, see [7].

2. A model of animal behavior

2.1 Deterministic model

A compartmental model of b behaviors in h habitats has at most m = bh compartments, each
of which represents a specific behavior in a specific habitat. Let N = 〈n1, n2, . . . , nm〉T be
the vector of numbers of animals in each compartment, M = (fij) be the matrix of numbers
of animals fij = fij(t, N) in compartment j that are eligible to move to compartment i, and
R = (rij) be the matrix of per capita rates rij = rij(t, N) at which eligible individuals move
from compartment j to compartment i. The deterministic model is the ODE balance equation
for the inflow and outflow rates for each compartment:

dN
dt

= diag(RMT − RTM), (1)

where the symbols T and diag denote the matrix transpose and diagonal vector, respec-
tively. For convenience, we take fii = rii = 0 for each i ∈ {1, 2, . . . , m}. The ODE for the
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ith compartment in model (1) is

dni

dt
=

m∑
j=1

rijfij −
m∑

j=1

rjifji.

Model (1) ignores birth and death processes. Thus, the total population size

K =
m∑

i=1

ni

remains constant, and we can reduce the dimension of (1) by writing nm = K − ∑m−1
i=1 ni .

Application of model (1) to a particular biological system requires specifying the functions
fij = fij(t, N) and rij = rij(t, N) by means of modeling assumptions and/or model selection
techniques. In general, model (1) is nonautonomous and nonlinear.

Suppose data are collected at discrete times with constant time step �t . Without loss of gen-
erality, choose the time units so that �t = 1. Consider the Poincaré map that takes stroboscopic
snapshots of the continuous-time model at these discrete times of data sampling:

Nτ+1 = F(τ, Nτ ) τ = 0, 1, 2, . . . (2)

where Nτ = N(τ ) and F is defined by

F(τ, Nτ ) = Nτ +
∫ τ+1

τ

diag(RMT − RTM)dt.

We will use model (2) to connect model (1) to the discrete-time data.

2.2 Stochastic model

A stochastic version of a deterministic model is necessary in order to connect it to data through
parameter estimation. A stochastic counterpart of model (2) is

φ(Nτ+1) = φ(F (τ, Nτ )) + Eτ , τ = 0, 1, 2, . . . (3)

where φ is a variance-stabilizing transformation that renders noise additive on the φ-scale,
and Eτ is a vector from a multivariate normal random distribution with variance–covariance
matrix � = (σij). A transformation for ecological data [7] is

φ(x) =
2 ln

(
1

2

√
ψx + 1

2

√
ψx + 4(1 − ψ)

)
√

ψ
, (4)

where ψ ∈ (0, 1] is a parameter that measures the relative amount of environmental noise
in the data. The value ψ = 1 corresponds to environmental stochasticity with transforma-
tion φ(x) = ln x, and ψ → 0+ corresponds to demographic stochasticity with transformation
φ(x) = √

x [11].
Note that model (3) assumes stochastic perturbations of the system are uncorrelated in the

sample times τ = 0, 1, 2, . . . .
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3. Colony–Preen model

The Colony–Preen model that we use for our field study is based on the following assumptions:

(A1) Each individual gull is categorized as belonging to one of three mutually exclusive
compartments: in the colony and preening (P ), in the colony but not preening (E,
for ‘everything else’), or away from the colony (A). The numbers of animals in each
compartment are denoted P , E, and A, respectively. Animals away from the colony
could not be observed and hence could not be categorized as preening or not preening.
Thus, the dimension of the system is m = 3 and N = 〈P, E, A〉T. For readability, we
use letters instead of numbers for subscripts; for example, the number of individuals
eligible to move from P to E will be denoted fEP instead of f21.

(A2) The number of individuals C = P + E attending the colony at any time t must sat-
isfy K/2 ≤ C(t) ≤ K , where K/2 > 0 is the number of nests/territories and K is the
number of territory owners. This assumption is based on the fact that at least one mate
attends each territory during chick-rearing season, and that intruding gulls are promptly
driven from the colony.

(A3) No individual moves directly from the P compartment to the A compartment; that is,
we assume that undisturbed gulls do not leave the colony during or immediately after a
bout of preening. Hence,

fAP = 0.

(A4) The number of individuals eligible to leave the colony via the E compartment and enter
the A compartment is typically E. However, given assumption A2, the number of gulls
in the colony that are eligible to leave cannot exceed C − K/2. Thus, the number of
individuals eligible to move from the E compartment to the A compartment is

fAE = min{E, C − K/2}.
(A5) All individuals in the A and P compartments are eligible to move to the E compartment

and all individuals in the A compartment are eligible to move to the P compartment.
Indeed, Forseyth [10] showed that preening is the most common behavior used by
Glaucous-winged Gulls within the first five minutes after they return to territory. Thus,

fEA = fPA = A, and fEP = P.

(A6) The number of individuals in the E compartment that are eligible to enter the P compart-
ment is αC − P , where 0 < α ≤ 1, as long as αC − P is positive, and zero otherwise;
that is,

fPE = max{αC − P, 0}, where 0 < α ≤ 1.

We interpret the coefficient α as the fraction of birds in the colony that are either preening
or engaged in behaviors that can transition directly to preen, such as rest or upright
postures. The quantity 1 − α is the fraction of birds in the colony engaged in behaviors
that seldom transition directly to preen, such as sleep [12]. Clearly this fraction changes
over time. Because the model does not track any behaviors except preen, however, we
assume α is constant.

(A7) The per capita transition rates rij are proportional to powers of six abiotic nondimen-
sionalized environmental variables: time of day �(t), tide height T (t), solar elevation
S(t), humidity H(t), wind speed on the colony Wc(t), and wind speed over open water
Ww(t), where 1 ≤ �, T , S, H, Wc, Ww ≤ 2. The rij functions can be different in the time
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periods we designate as ‘Morning’(5 ≤ t ≤ 10), ‘Midday’(10 < t < 14) and ‘Evening’
(14 ≤ t ≤ 20) [7]. Thus,

rij(t) =

⎧⎪⎨
⎪⎩

mij�
aij1T bij1Scij1Hdij1W

fij1
c W

gij1
w if 5 ≤ t < 10

nij�
aij2T bij2Scij2Hdij2W

fij2
c W

gij2
w if 10 ≤ t < 14

eij�
aij3T bij3Scij3Hdij3W

fij3
c W

gij3
w if 14 ≤ t ≤ 20,

(5)

where mij, nij, eij > 0 and aijk, bijk, cijk, dijk, fijk, gijk ∈ R are constant parameters.

Given assumptions A1–A7 and the identities E = C − P and A = K − C, it is straight-
forward to show that model (1) is equivalent to the two-dimensional system

dC

dt
= rPA(K − C) + rEA(K − C) − rAE min{C − P, C − K/2},

dP

dt
= rPE max{αC − P, 0} + rPA(K − C) − rEP P,

(6)

which we refer to as the Colony–Preen model. It is also straightforward to show that solutions
of model (6) satisfy the inequalities K/2 ≤ C(t) ≤ K and 0 ≤ P(t) ≤ C(t) for all time t

provided the initial conditions do.†

4. Hourly data

We collected data on colony occupancy and preen behavior at Protection Island National
Wildlife Refuge (48◦08′N, 122◦55′W), Jefferson County, Washington. The island lies at the
southeastern end of the Strait of Juan de Fuca, and consists mostly of a high plateau bordered
by steep bluffs. Violet Point, a gravel spit extending to the southeast, contains a breeding
colony of more than 2400 pairs of nesting Glaucous-winged Gulls. We selected a 33 × 100 m
sample colony area containing approximately 70 nests.

Observations consisted of hourly census counts and behavior scans taken during daylight
hours in chick-rearing season from 0500–2000 Pacific Standard Time (PST) for 14 days on 30
June–2 July and 6 July–16 July 2004. Observations were made using a 20–60× spotting scope
from an observation point atop a 33 m bluff that borders the west end of Violet Point. The
observation point was located 100 m from the proximal edge of the colony, and 200 m from
the study plot. The presence of observers did not seem to influence the behavior of the gulls
in any way. At the top of each hour, a census and a behavior scan were taken, in that order.
Behaviors were recorded by voice and subsequently transcribed. The number of animals in the
behavior scan was typically slightly different from the census, since these observations were
not conducted simultaneously. To correct for this, we divided the number of birds exhibiting
a particular behavior by the number of birds scanned, and multiplied the result by the census.

A weather station located 2 m above site elevation on the northwest end of Violet Point
recorded hourly values of a large number of environmental conditions on the colony, including
temperature, humidity, wind speed and direction, heat index, barometric pressure, rainfall,
and solar radiation. Hourly tide heights and solar elevations, as well as wind speeds in the
Strait (measured at Smith Island), were obtained from the National Oceanic and Atmospheric

†The trapezoid {(C, P )|0 ≤ P ≤ C and K/2 ≤ C ≤ K} is forward invariant under model (6). This is because
along the lines C = K/2, C = K , and P = 0, we have the inequalities dC/dt > 0, dC/dt ≤ 0, and dP/dt > 0,
respectively. SupposeP = C. Then dC/dt ≥ 0 and dP/dt < dC/dt . Thus, dP/dt < 0 if dC/dt = 0, and dP/dC < 1
if dC/dt > 0.
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Administration (NOAA). We nondimensionalized all environmental variables x so that 1 ≤
x ≤ 2 [1,3,4,6,7].

5. Connecting model and data

Models are connected to data through the determination of parameter values. In general,
parameters can be (a) determined directly from data, (b) selected from a discrete number of
alternative values by means of model selection techniques, or (c) estimated from data through
statistical model fitting procedures. In this study we use all three methods in concert.

Model (6) contains 107 parameters: the two parameters K and α shown explicitly in
equation (6), and three coefficients and 18 exponents as shown in equation (5) for each of
five per capita flow rates shown in equation (6). The stochastic model (3)–(4) further contains
the parameter ψ (as well as three variance–covariance parameters, but these can be com-
puted from the fitted sum of squared residuals). Numerical estimation of this many parameters
through model fitting would require a very large data set. Thus, we utilized all three methods
of parameter determination in the following way. (a) We set K = 140, since our sample colony
area contained 70 nesting pairs. (b) We selected the values of the 90 exponents and ψ from the
alternatives aijk, bijk, cijk, dijk, fijk, gijk ∈ {−1, 0, 1} and ψ ∈ {0.01, 0.5, 1} by means of model
selection techniques as explained below. (c) We estimated the 16 parameters α, mij, nij, eij

from data using the maximum likelihood (ML) method as explained below.

5.1 Model selection

Each of the 90 exponent parameters was assumed to have the value −1, 0, or 1, and ψ

was assumed to have the value 0.01, 0.5, or 1. This created a very large number of possible
models in the form of model (6). We chose a relatively small subset of these based on (a) the
biologists’ knowledge of what was likely to be most biologically reasonable for the system,
(b) statistical investigations comparing the data and the environmental variables, and (c) the
experience gained by weeks of trial and error searches for models that could fit the data.
Of these alternative models, we took the best to be the one with the smallest (fitted) sum of
squared residuals after ML parameterization, and we discarded the others. Because each of
the alternative models had the same number of ML parameters, it was not necessary to use
information-theoretic model selection indices such as the Akaike Information Criterion (AIC),
which penalize models having more parameters [13].

Once the best model was determined from the list of alternatives, the exponents with value
−1 (or 1) were decreased (or increased) by integer units until the best integer exponents were
obtained.

The per capita transition rates rij for the best model are shown in figure 1.

5.2 Parameter estimation

In order to compare the alternative models, each had to be fitted to the data through parameter
estimation. We used the method of maximum likelihood (ML) to estimate the 16 parameters
α, mij, nij, eij. Let {nτ }qτ=0 be the sequence of data vectors observed at times τ = 0, 1, 2, . . . , q.
Given the observation nτ at time τ , the ‘one-step’ model prediction for the next census at time
τ + 1 is

Nτ+1 = F(τ, nτ ).
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Figure 1. Per capita flow rates for best model, as a function of nondimensionalized time of day �, tide height
T , solar elevation S, humidity H , wind speed on the colony Wc , and wind speed over open water Ww . A. Morning
(0500–1000 PST). B. Midday (1000–1400 PST). C. Evening (1400–2000 PST). The ML parameters with ψ = 1 were
α = 0.234, mEA = 0.00297, mAE = 0.393, mPA = 0.0709, mEP = 1.19, m̄EP = 1.29, mPE = 0.797, nEA = 0.0123,
nAE = 0.0502, nPA = 0.127, nEP = 0.834, nPE = 1.36, eEA = 0.0217, eAE = 0.171, ePA = 0.00277, eEP = 7.61,
ePE = 2.92. The estimated entries of � were σ11 = 0.00644, σ22 = 0.0957, σ12 = σ21 = 0.00635.

The (transformed) residual error vector for this prediction is given by

ρτ+1 = φ(nτ+1) − φ(Nτ+1) = φ(nτ+1) − φ(F (τ, nτ )).

According to the assumptions implicit in the stochastic model (3), these one-step resi-
dual model errors come from a joint normal distribution with variance-covariance matrix
�, and they are uncorrelated in the sample times τ = 0, 1, 2, . . . . Let θ be the vec-
tor of model parameters to be estimated. Then the maximizer θ̂ of the log-likelihood
function

ln L(θ , �) = −q ln(2π) − q

2
ln |�| − 1

2

q∑
τ=1

ρT
τ �−1ρτ

is the vector of ML parameter estimates [11]. We maximized the log-likelihood function
numerically by minimizing its negative with the Nelder–Mead algorithm [14] under three
different types of stochasticity: mostly demographic (ψ = 0.01), a mixture of demographic
and environmental (ψ = 0.5), and purely environmental (ψ = 1) [7].

Fixed values of 
 = 0.01, 0.5, and 1 for the best model yielded log-likelihood values of
−260, 65.0, and 175, respectively. Thus, we took ψ = 1 as the appropriate transformation and
concluded that the stochasticity in the system was largely environmental. The ML parameter
estimates assuming ψ = 1 are given in the caption of figure 1.
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5.3 Goodness-of-fit

The goodness-of-fit for the colony attendance was computed as

R2
C = 1 −

∑q

τ=1(φ(cτ ) − φ(Cτ ))
2∑q

τ=1(φ(cτ ) − φ(c))2

where cτ and Cτ are, respectively, the observed and predicted colony occupancy at time τ , and
φ(c) is the sample mean of the transformed observations. The R2

P for preen was computed
similarly.

The goodness-of-fits were R2
C = 0.65 and R2

P = 0.37. Figure 2 compares the data with the
one-step model predictions.

5.4 Model orbits in the C–P plane

In order to simulate trajectories of model (6) that span more than one day, the behavioral
transition rates must be specified for nighttime hours. In the absence of data on the behavior
of gulls after dark, we assume all transition rates are zero, so that the system remains constant
between 2000 and 0500 hours.

Figure 3 shows an orbit of model (6) for 26 June–16 July 2004 as a continuous curve in the
C–P plane. The discrete-time orbit of model (2) lies at hourly intervals along this curve and

Figure 2. Hourly observations (solid circles), conditioned one-step model predictions (open circles), and tide height
(dotted curve) as a function of time (PST). Figures 2A and 2B both show 14 days of data in chronological order from
left to right, top to bottom. A. Number of birds in the colony. B. Number of birds preening in the colony.
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Figure 3. Model orbit for 26 June 26–16 July 2004 in C–P plane. The 24-h Poincaré sections are shown for each
hour. A. 0500–0800 PST. B. 0900–1200 PST. C. 1300–1600 PST. D. 1700–2000 PST.

is marked by symbols at each data collection hour (0500–2000). Symbols 24 h apart have the
same geometric shape, generating 24-h Poincaré sections.

6. Discussion

6.1 Model predicted environmental cues for behavior

The connection between the ‘driving’ environmental factors in the model and the behavioral
dynamics is that of mathematical implication rather than scientific causation. That is, the
environmental ‘determinants’ isolated in this study are correlative and may or may not be
causative [6]. Nevertheless, the identification of environmental determinants may narrow the
search for cues that elicit behavior. Model (6), with the per capita flow rates shown in figure 1,
suggests specific environmental cues for behavior.
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Morning (0500–1000 PST). The model suggests that in the Morning, gulls tend to leave the
colony at a constant per capita rate (figure 1A, rAE) but return to the colony if the tide is high
(figure 1A, rEA). Returning birds tend to preen immediately upon arrival if it is also humid
(figure 1A, rPA). In the colony, birds tend to begin preening if the humidity is high (figure 1A,
rPE). Preening birds tend to stop preening as the sun rises in the sky, or if the humidity is low.
In the early morning birds stop preening if it is windy on the colony (figure 1A, rEP).

Midday (1000–1400 PST). During Midday, gulls tend to leave the colony when the sun is
high (figure 1B, rAE), but tend to return if it is windy over the open water (figure 1B, rEA).
Returning birds tend to preen immediately upon arrival if it is also humid, but this tendency is
reduced when the sun is high (figure 1B, rPA). Birds in the colony tend to stop preening when
the sun is high (figure 1B, rEP) and start preening if it is humid (figure 1B, rPE).

Evening (1400–2000 PST). As the evening progresses, gulls tend to return to the colony
(figure 1C, rEA), and the tendency to leave the colony is reduced (figure 1C, rAE). There is an
increased tendency to preen in humid conditions and also toward the end of the day (figure 1C,
rPE and rPA).

This model suggests that relative humidity is an important cue for preening behavior. Pre-
vious data show that preening is more likely to occur after rain than at other times (J.L.H.
unpublished data). It should be noted, however, that there was no measurable precipitation
during the data collection period in this study.

6.2 Other factors influencing preen

Our analysis suggests that a majority (65%) of the temporal fluctuations in colony occupancy
were driven by, or at least correlated with, abiotic environmental factors. However, only 37%
of the variability in incidence of preen was explained by abiotic environmental factors; the
majority of preen dynamics apparently was due to other factors. For instance, preening activity
is known to function in maintenance of feathers after they become damp or water soaked
[15, 16]. The regularity and duration of preening bouts varies dramatically after different
lengths of bathing activities in Herring Gulls [17]. It is hypothesized that preening may also
be a displacement activity involved in soothing or quieting gulls after extended periods of
disturbance or flight back to the breeding colony [16, 18].

Another reason preen may be hard to predict from abiotic environmental factors is social
facilitation. Palestis and Burger [19] and Wilson [20] showed an increase in preening in the
presence of preening mates or nearby neighbors. Specific factors driving these and other social
interactions in gulls are complicated and poorly understood. When the per capita transition
rates rPE from other behaviors to preen were made proportional to the number preening P(t),
the goodness-of-fit for preen rose only slightly, from R2

P = 0.365 to R2
P = 0.368. We therefore

hypothesize that the effects of social facilitation on preening are localized and not necessarily
operative at the aggregate level.

6.3 Model error

Because ψ = 1 yielded higher log-likelihood values than did ψ = 0.01 or ψ = 0.5, our
analysis suggested that the fluctuations left unexplained by the model were due largely to
environmental stochasticity rather than demographic stochasticity or a mixture of the two.
This is consistent with our observations of increased preening after eagle disturbances, which
constitute one of the most frequent environmental stochastic perturbations of the system [21].
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Much of the model error in preen dynamics was due to approximately 7% of the data: when
all data points with preen residual ≥ 10 were removed (14 data points out of 196 total), the fit
rose to R2

P = 0.47 (R2
C remained approximately the same at 0.68).

6.4 Diurnal periodicity in model system

From the Poincaré sections in figure 3A,C,D, one can see that the model system predicts an
approximate 24-h return time during 0500–0600 and 1500–2000 PST. During 0700–1400 PST,
however, model dynamics are more complicated (figure 3A–C). That is to say, the observer
who studies the system as a function only of time of day will find it relatively predictable for
0500–0600 and 1500–2000 as compared to other times. This is because tide height, humidity,
and wind speeds at Protection Island are least variable at these times: summer tides are high
in the afternoon and evening, humidity is generally highest in the morning and evening, and
winds tend to be calm in the morning and evening.

6.5 Caveats in modeling process

The model identification process used in this study is more ad hoc than it appears in the
explanation of the methodology. Parameterization of systems of ODEs with more than a few
parameters is computationally intensive. One circumvents exhaustive model selection (such
as that employed in [3]) by gaining experience with the system both through long periods
of direct observation in the field and through many hours spent at the computer trying to
parameterize hypothesized models.

One quickly realizes that the ‘best’flow rate functions, although quite robust, are not unique;
other, similar, flow rate functions can give similar model fits. This is true for several reasons.
First, some of the environmental factors may be correlated. For example, hour of day � and
solar elevation S or its reciprocal 1/S are in some cases interchangeable. Second, it is often
difficult to determine from census data alone which variables drive inflow versus outflow rates.
For example, it is not clear whether birds leave the colony in response to low tide (rAE ∝ T −1),
or return in response to high tide (rEA ∝ T ), or both. Henson et al. [6] show how inflow and
outflow rates can be determined separately when census data are collected on a finer time scale
immediately after a disturbance of the system. Third, after the best values of the exponents
aijk, bijk, cijk, dijk, fijk, gijk are determined from the set {−1, 0, 1}, it is too computationally
time-consuming to try many combinations of higher or lower integer exponents. A number of
combinations might work equally well. Thus, for example, the specific power 6 in the Evening
flow rate rEA = eEA�6 into the colony should not necessarily be viewed as significant.

A further caveat is that the set of ML parameters often is not unique—the ML function
typically has multiple local maxima—and sometimes the multiple parameterizations have
fairly similar ML values. This is because various magnitudes of inflows and outflows, if
properly balanced, can give rise to the same net rate of change. A detailed mathematical
discussion of this is given in [6].

6.6 Summary

Using the Colony–Preen model derived and parameterized in this study, we found that territory
attendance by gulls in an observed breeding colony was driven largely by abiotic environmen-
tal conditions (namely time of day, solar elevation, tide height, and wind speed over nearby
open water), whereas only 37% of the variability in preening behavior was driven by abi-
otic environmental conditions (time of day, solar elevation, humidity, and wind speed on the
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colony). We conclude that local and/or biotic effects not included in the aggregate-level model
played an important role in preening behavior.

Mathematical models can identify, explain and predict deterministic trends in behavior, and
parse out the contributions of environmental and demographic stochasticity. Such models are
powerful tools for detecting factors that elicit behavior, for clarifying functions of behavior,
and for generating new hypotheses. Although compartmental models are standard tools in the
physical sciences, pharmacology, epidemiology, and population biology [22], they have been
considered too coarse to predict animal behavior because they lump individuals into aggregates
under simplifying assumptions [23]. Using compartmental modeling techniques, however, we
have shown that some behaviors of gulls (such as loafing, territory attendance, and sleeping)
are determined largely by environmental factors and are mathematically predictable at the
aggregate level despite variability among individuals. We have shown that other behaviors
(such as preening) are more complicated. We suggest that compartmental models may provide
a new approach to the study of deterministic trends in the behavior of animals and humans.
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Appendix. List of variables

fij number of individuals in j eligible to move to i

rij per capita rate at which eligible individuals move from j to i

K total number of colony residents = twice the number of nesting territories
P number in colony preening
E number in colony not preening
C number in colony = P + E

A number away from colony = K − C

t time of day, in hours
� time of day, nondimensionalized
T tide height, nondimensionalized
S solar elevation, nondimensionalized
H humidity, nondimensionalized
Wc wind speed on colony, nondimensionalized
Ww wind speed over open water, nondimensionalized

 parameter measuring environmental noise




