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Summary

1.

 

It was once assumed that commercially important fish make up significant portions
of seal diets. As a consequence, prior to the 1970s many seal populations were dramatically
reduced by rampant slaughtering. Today, seals and other marine mammals are valued
components of marine ecosystems and their numbers are carefully managed. To facilitate
management, government statutes mandate the systematic monitoring of seal popula-
tions. Population estimates are based on counts of hauled-out seals obtained by aerial
survey and radio and satellite telemetry; hence, considerable effort has been devoted to
finding optimal times for such counts. We have developed a predictive mathematical model
of seal haul-out to assist resource managers in the selection of optimal census times.

 

2.

 

Haul-out depends on a number of environmental variables. Some of these variables,
such as wind speed, can be obtained only as historical data or short-range predictions.
Others, such as tide height, are deterministic and can be obtained as long-range
predictions.

 

3.

 

We used deterministic environmental variables to develop mathematical models that
describe haul-out dynamics of harbour seals 

 

Phoca vitulina

 

 during the pupping season
at a site in Washington, USA. A list of alternative hypotheses for environmental cues
gave rise to a suite of competing models. We used information–theoretic model selection
techniques to choose the best model. The selected model was a function of tide height
and current direction, and explained 40% of the variability in hourly census data.

 

4.

 

An assumption that the system recovers rapidly after disturbance introduced two time
scales. This allowed the differential equation model to be reduced to an algebraic equation.

 

5.

 

Synthesis and applications.

 

 This study demonstrates that resource managers can use
a simple algebraic equation based on deterministic environmental variables to predict
times at which to census maximal haul-out in harbour seals. At the Washington site,
maximal daily haul-outs during pupping season are predicted to occur during receding
tides, approximately midway between high and low tides. The largest maximal daily
haul-outs during the pupping season are predicted to occur in the last week of July. The
environmental factors correlated with haul-out are, however, site-specific; therefore the
model developed for the Washington site will not necessarily hold for other haul-out
areas. Managers should carry out the model selection procedure separately for each
monitored haul-out site. The general methodology employed in this study can be used
to make long-range predictions of diurnal movements for a variety of marine birds and
mammals.
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Introduction

 

Harbour seals 

 

Phoca vitulina

 

 L. live within a broad
latitudinal range along the North Atlantic and North
Pacific coasts (Thompson 

 

et al

 

. 1997; Carretta 

 

et al

 

.
2002). During the early and mid-20th century large
numbers of these animals were slaughtered under the
false assumption that commercially important fish such
as salmon (

 

Oncorhyncus

 

 sp.) formed a major component
of harbour seal diets. Better understanding of the diets
of harbour seals and increasing public concern over
declining numbers of all marine mammals led to the 1970
Conservation of Seals Act (CSA) in the UK and the
1972 Marine Mammal Protection Act (MMPA) in the
USA. These acts resulted in dramatic recoveries of seal
populations (Boveng 1988; Moss 1992; Matthiopoulos

 

et al

 

. 2004).
Not only do the CSA and MMPA provide statutory

protection of seals, they also mandate the systematic
monitoring of seal populations. Population estimates
are used by government agencies to make decisions
concerning seal conservation vis-à-vis human utilization
of marine fisheries and other resources. Estimates are
based on aerial as well as radio and satellite telemetered
counts of hauled-out seals. Significant efforts are devoted
to determining the most appropriate census times to
achieve maximal counts under the assumption that
these numbers can be used to calculate reasonable esti-
mates of population size (Pitcher & McAllister 1981;
Stewart 1984; Thompson 

 

et al

 

. 1989, 1997; Huber 1995;
Thompson, Van Parijs & Kovacs 2001; Adkinson, Quinn
& Small 2003; Jeffries 

 

et al

 

. 2003; Matthiopoulos 

 

et al

 

.
2004).

During the pupping season harbour seals divide
their time between coastal waters, where they feed, and
favourite haul-out sites, where they rest, interact with
conspecifics, give birth and tend young (Watts 1992;
Kroll 1993). They use a wide variety of habitats for
hauling out, including sand and cobble beaches, rocky
shelves, tidal sand and mud bars, human-made structures
and drifting glacial ice (Stewart 1984). Hauling out
lowers the cost of negotiating waves and currents and
raises the temperature of peripheral tissues, promoting
skin growth and maintenance. Timing of haul-out varies
by sex, locality, individual variation and pelage dryness
(Thompson 

 

et al

 

. 1989, 1997; Watts 1992), as well as by
a variety of environmental factors, including time of
year, tide height, shoreline topography, time of day, wave
intensity, disturbance, wind chill, wind speed, solar radi-
ation and air temperature (Schneider & Payne 1983;
Stewart 1984; Thompson 

 

et al

 

. 1989, 1997; Watts 1992).
Studies of haul-out patterns typically utilize statistical

approaches such as canonical correlation, linear
regression and analysis of variance, which are designed
to identify significantly correlated independent variables
(Schneider & Payne 1983; Stewart 1984; Thompson

 

et al

 

. 1989; Moss 1992; Watts 1992). Statistical studies
are useful for understanding patterns in historical data,
but they provide limited predictive capability. In

contrast, in addition to the description of past patterns,
mathematical modelling allows the prediction of future
patterns and the identification of probable driving forces
for these patterns (Levin 1992; Hastings 1997).

In previous work, Henson 

 

et al

 

. (2004) used a differ-
ential equation model to predict, with surprising accuracy,
diurnal habitat occupancy patterns in marine birds on
Protection Island National Wildlife Refuge, Washington,
USA. Deterministic environmental variables, including
tide height, solar elevation and day of year, were used to
create long-range predictions. In this study, we used
similar methodology, but a different set of environmental
variables, to model harbour seal haul-out on a beach at
Protection Island, Washington, USA.

 

Methods

 

 

 

During the pupping season, hourly counts of harbour
seals hauled out on the north beach of Violet Point,
Protection Island (48

 

°

 

08

 

′

 

N, 122

 

°

 

55

 

′

 

W), were made on
1 day per week from 05.00 to 20.00 Pacific Standard
Time, during July and August of 1995 and 1997–99. All
counts were made from a 33-m bluff overlooking Violet
Point; counts made within 30 min after a major distur-
bance were discarded. A seal was considered to be hauled
out if  its body was resting on the substrate, even when
partially submerged. Hourly counts yielded samples at
a temporal scale appropriate for detection of tidal and
diurnal periodicities (Hunt & Schneider 1987). Tides in
the adjacent Strait of  Juan de Fuca are semi-diurnal
with strong diurnal inequalities in the lows. ‘Nodes’ of
minimal tidal amplitude occur approximately every
14 days (Fig. 1; arrows). Patterns in counts tended to recur
during similar times within this biweekly tidal cycle.

 

 

 

One principle of mathematical modelling is to identify
a parsimonious set of simplifying assumptions that
captures the main dynamics of a system. The model
proposed in this study is formulated from five assumptions.

 

Assumption 1

 

The numbers of seals that haul out in the study area
during daylight hours can be described with a two-
compartment model consisting of the haul-out site and
a remote location (everywhere else).

 

Assumption 2

 

Seals move back and forth between these two com-
partments in direct response to deterministic environ-
mental variables. Specifically, seals leave the haul-out site
for the remote location at a per capita rate proportional
to a function 

 

E

 

21

 

(

 

t

 

) of deterministic environmental vari-
ables, and return to the haul-out site at a per capita rate
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proportional to a function 

 

E

 

12

 

(

 

t

 

) of deterministic en-
vironmental variables. There are no density-dependent
effects; that is, 

 

E

 

12

 

(

 

t

 

) and 

 

E

 

21

 

(

 

t

 

) do not depend on the
seal density in either compartment.

 

Assumption 3

 

The upper bound 

 

M

 

(

 

t

 

) for the number of seals that may
haul out at the study area during pupping season can
be approximated by:

eqn 1

where 

 

t

 

 is the hour of the day and 

 

β

 

, 

 

γ

 

 and 

 

δ

 

 

 

>

 

 0 are pos-
itive constants. The functional form in this assumption
was suggested by the maximal weekly haul-out counts,
as shown in Fig. 2. Three points should be emphasized.

First, 

 

M

 

(

 

t

 

) is not the population size but is simply a
functional form assumed to describe the upper bound
for the number that haul out at the study area. Seal
monitors use various techniques to estimate population
sizes from haul-out counts (Pitcher & McAllister 1981;
Thompson & Harwood 1990; Moss 1992; Watts 1992;
Huber 1995; Matthiopoulos 

 

et al

 

. 2004) but we did not
address or model population size in this study. Secondly,

 

M

 

(

 

t

 

) is not the normal curve fitted to the data in Fig. 2.
The parameters 

 

β

 

, 

 

γ

 

 and 

 

δ

 

 in equation 1 were estimated,
along with the rest of the model parameters, from cen-
sus time series data as described in the section on model
parameterization. Thirdly, the functional form of 

 

M

 

(

 

t

 

)
depends on the seasonal context. Maximal counts do
not follow a normal curve throughout the year.

 

Assumption 4

 

The system recovers rapidly after disturbance. Spe-
cifically, the values of  

 

M

 

(

 

t

 

), 

 

E

 

12

 

(

 

t

 

) and 

 

E

 

21

 

(

 

t

 

) remain
approximately constant during the time it takes the
system to return to ‘steady state’ dynamics.

 

Assumption 5

 

The main source of noise in the census data is demo-
graphic stochasticity, which can be modelled with a
stochastic ‘birth-and-death’ (arrival-and-departure)
process, as detailed below in the section on the stochastic
model. This assumption was motivated by a post-hoc
inspection of model residuals.

 

  

 

The dynamics of ‘compartmental models’ are typically
described by differential equations of the form:

Fig. 1. Model prediction (lower solid curve), seal haul-out
data (circles), tidal curve (upper solid curve) and current
velocity (dashed curve). Each panel corresponds to 1 day. Tide
height is graphed on a vertical scale of −1 to 3 m, and current
velocity on a scale of −2 to 1·5 knots. A typical 14-day tidal
period for Protection Island is shown at the bottom; tidal
nodes are indicated with arrows. Data from days occurring
during the same time in the tidal period are stacked vertically.
The data in a given column show similar diurnal patterns.
Days preceded by high, sustained winds are designated W (see
the Discussion). The following are dates for days in each of the
six columns, left to right, top to bottom: first column, 6 July 1995,
7 July 1999, 20 July 1995, 21 July 1999, 3 August 1995, 4 August
1999, 18 August 1999; second column, 2 July 1997, 16 July 1997,
30 July 1997, 5 August 1998, 13 August 1997; third column, 8
July 1998, 22 July 1998; fourth column, 13 July 1995, 14 July
1999, 27 July 1995, 28 July 1999, 11 August 1999; fifth column,
9 July 1997, 23 July 1997, 6 August 1997; sixth column, 1 July
1998, 15 July 1998, 29 July 1998, 12 August 1998.

M t e t( )  ( / )= − −β γ δday of year + 24 2

Fig. 2. Maximal counts at the haul-out site during 1 July−18
August. Each bar represents 1 week. The height of each bar is
the mean maximal count recorded at the haul-out site for that
week, averaged over the years 1995 and 1997–99. Based on
this graph, the function M(t) was assumed proportional to a
normal curve. The dotted normal curve shown is not M(t); see
assumption 3 in the text.
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Given the first three assumptions, this becomes:

eqn 2

Here 

 

N

 

(

 

t

 

) is the number of seals hauled out at hour 

 

t

 

, 

 

M

 

(

 

t

 

)
is the upper bound for the number that may haul out as
given in equation 1, 

 

E

 

12

 

(

 

t

 

) and 

 

E

 

21

 

(

 

t

 

) are the functions of
environmental variables to be determined, and the para-
meters 

 

a

 

 and 

 

b

 

 

 

>

 

 0 are constants of proportionality. Given
assumption 4, it can be shown by the methods of multiple
time scale analysis (Hoppensteadt 1974; Tikhonov,
Vasil’eva & Sveshnikov 1985; Lin & Segel 1988) that, in
the absence of disturbance, the solution of the differential
equation 2 is well approximated by the algebraic equation:

eqn 3

Note that equation 3 depends on the ratio of the two
environmental functions and the ratio of  the para-
meters 

 

b

 

 and 

 

a

 

. Replacing the ratios in equation 3 by

 

α

 

 

 

=

 

 

 

b/a

 

 and 

 

E

 

(

 

t

 

) 

 

=

 

 

 

E

 

21

 

(

 

t

 

)/

 

E

 

12

 

(

 

t

 

), and substituting the
expression for 

 

M

 

(

 

t

 

) from equation 1, yields the deter-
ministic mathematical model:

eqn 4

where 

 

α

 

, 

 

β

 

, 

 

γ

 

 and δ > 0 are constant parameters to be
estimated from data.

  

Noise is ubiquitous in ecological systems. In order to
link the model represented by equation 4 to data, one must
first model the departure of the data from the deter-
ministic predictions. Under assumption 5, the noise
is approximately additive on the square-root scale
(Dennis et al. 2001):

Here the ε(t) are standard normal random variables
uncorrelated in time, and σ > 0 is a constant parameter.
This yields the stochastic model:

eqn 5

The square-root transformation arises as a method of
analysing data from a stochastic birth-and-death pro-
cess. Suppose the number N of  seals hauled out is a dis-
crete stochastic birth-and-death process with a linear
arrival (birth) rate of  the form φ − ηN and a pro-
portional departure (death) rate µN. In other words, in
a small interval of time ∆t, the approximate probability
of an arrival is (φ − ηN )∆t, and the approximate prob-
ability of a departure is µN∆t, given that the current
number of seals hauled out is N (Taylor & Karlin 1984).

The equilibrium probability distribution for N is then
a generalized binomial (φ/η, φ/(η + µ)) distribution
(binomial with non-integer number of trials, reducing
to an exact binomial if  φ/η is a positive integer) with
mean φ/(η + µ) (Boswell, Ord & Patil 1979). If  φ, η and
µ are slowly varying functions of time, the distribution
of N will equilibrate towards the binomial evaluated at
the current values of φ, η and µ. The birth and death
model is a stochastic version of the deterministic model
(equation 2), with φ = aE12(t)M(t), η = aE12(t) and µ =
bE21(t). The equilibrium binomial is well-approximated
by a Poisson distribution with mean φ/(η + µ). In turn,
to a good approximation, the square-root of a Poisson
random variable is normally distributed with a mean
[φ/(η + µ)]1/2 and with a constant variance that does not
depend on the value of the mean (Rao 1973). Thus, by
transforming the observations and model to the square-
root scale, statistical inferences can be accomplished with
standard approaches based on the normal distribution.
On the square-root scale, model fitting (parameter estima-
tion) was done with non-linear least-squares, and model
diagnostic analyses focused on the residuals, as explained
below in the sections on model parameterization and
model selection. Transforming a Poisson model to the
square-root scale has an added advantage: least-squares
parameter estimates have some theoretical robustness to
departures of the data from distributional assumptions.

 

A suite of competing models, having the form of equa-
tion 5, was proposed based on an array of hypotheses
about the environmental function E(t). Solar elevation
S(t) and tide height T(t) data were obtained from the
National Oceanic and Atmospheric Administration
(NOAA), USA, web sites http://www.srrb.noaa.gov/
highlights/sunrise/azel.html and http://co-ops.nos.noaa.gov,
and current speed predictions C(t) were obtained from
the University of South Carolina, USA, web site http://
tbone.biol.sc.edu/tide/. These environmental variables
exhibit temporal aperiodic oscillations; they were non-
dimensionalized and normalized so that:

1 ≤ S(t), T(t), C(t) ≤ 2

The tidal oscillation exhibits high and low tides of
widely varying magnitudes (Fig. 1; bottom). Given
that the animals might respond in the same way to all
tidal highs and lows regardless of exact values, another
environmental variable was constructed: tide height
Te(t) with ‘equalized extrema’. To construct Te(t) from
T(t), all local maximum values of T(t) were set equal to
2, all minimum values were set equal to 1, and the oscil-
lation was splined between these points. An equalized
extrema current variable Ce(t) was constructed from
C(t) in the same manner. Twenty-three possibilities for
E(t) involving powers of the environmental variables
S(t), T(t), Te(t), C(t) and Ce(t) were posed, which gave
rise to 23 alternative mathematical models (Table 1).

d
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Parameters for each of the 23 alternative models were
estimated from the data using the method of least-
squares (LS) on the square-root scale. The LS method
(as opposed to fitting the Poisson or binomial models
directly with maximum likelihood) relaxes many of the
assumptions about the distribution of the residual
errors (Dennis et al. 2001). In this method the residual
sum of squares (RSS):

is minimized as a function of the vector θ of  model
parameters. Here ‘model prediction’ refers to the pre-
diction generated by the deterministic model given in
equation 4. The minimizer # is the vector of LS para-
meter estimates for the model.

 

When comparing models, one should use a selection
criterion that takes into account the number of parameters

as well as the goodness-of-fit; models having more
parameters should be penalized. The Akaike informa-
tion criterion (AIC) is an information–theoretic model
selection index designed to select the model closest to
the ‘truth’ from a suite of alternative models (Burnham
& Anderson 2002; Peek, Dennis & Hershey 2002;
Gibson et al. 2004; Rushton, Ormerod & Kerby 2004).
For LS parameters the criterion is equivalent to:

AIC = n ln 22 + 2κ

where n is the number of observations, 22 = RSS(#)/n is
the variance of the likelihood function as estimated from
the residuals and κ is the number of model parameters,
including σ2. The candidate model with the smallest
AIC value, denoted AICmin, is the model closest to the
‘truth’. Model comparison is based on relative, rather
than raw, AIC values. Thus, models are ranked accord-
ing to the AIC differences ∆i = AICi – AICmin, with the
best model having ∆i = 0. Models with ∆i > 10 generally
are considered significantly inferior to the best model,
and can be rejected (Burnham & Anderson 2002).

Goodness-of-fit was computed as:

where ‘mean’ denotes the mean of the square-roots of
the observations. This R2 value estimates, on the square-
root scale, the proportion of the observed variability
that is explained by the model. The higher the R2 value,
the better the model fit, with R2 = 1 denoting a perfect fit.

The R2, AIC and ∆i for the suite of candidate models
are shown in Table 1.

Results

The model with the lowest AIC (∆i = 0) and highest
R2 (0·41) was the one with the environmental func-
tion  (Table 1). The model with

 ranked a close second best, with ∆i =
6 and R2 = 0·40. The third best model lagged signi-
ficantly behind, with ∆i = 35 > 10 and R2 = 0·35. Thus, all
models except the best two were eliminated from fur-
ther consideration. The model with 
was selected as the more parsimonious of the two best
models, yielding the deterministic model:

eqn 6

Simulations of equation 6, using the LS parameters
α = 3·735, β = 181·6, γ = 0·001158, δ = 215·2, q = 3·774,
and r = 7·255, are shown in Fig. 1.

Simulations of equation 6 predict that seals begin to
leave the beach about midway between high and low
tides, and begin to return to the beach between low and
high tides but before the midpoint. Thus, haul-out num-
bers are predicted to be highest approximately midway
between high and low tides, and lowest between low

Table 1. Model comparison. Least-squares (LS) parameters
were estimated for each of the 23 alternative models grouped by
the arrangement of variables in E(t); the variance parameter
σ2 of the likelihood function was estimated from the residuals.
AIC was computed from σ2, the number of  parameters
(including σ2), denoted here by κ, and the number of data
points (389). *Best model in each group. The model with

 was selected because it was the more
parsimonious of the two best-fitting models. The LS parameters
for this model are α = 3·735, β = 181·6, γ = 0·001158, δ = 215·2,
q = 3·774 and r = 7·255
 

 

E(t) σ2 κ AIC ∆i R2

1 13·5 5 1023 139 0·14

T r 13·5 6 1025 141 0·14
13·5 6 1025 141 0·14

1/T r 11·1 6 948 64 0·30*
1/ 13·5 6 1025 141 0·15

S u 12·4 6 991 107 0·22*
1/S u 13·5 6 1025 141 0·14

C q 12·4 6 991 107 0·22*
12·6 6 998 114 0·20

1/C q 13·5 6 1025 141 0·14
1/ 13·5 6 1025 141 0·14

C q S u 12·3 7 989 105 0·22
S u 11·6 7 968 84 0·27*

S u/T r 10·5 7 927 43 0·34*
S u/ 13·3 7 1022 138 0·16

C q/T r 10·2 7 919 35 0·35
/T r 9·5 7 890 6 0·40*

C q/ 13·0 7 1012 128 0·18
/ 12·0 7 981 97 0·24

C q S u/T r 10·2 8 921 37 0·35
 S u/T r 9·3 8 884 0 0·41*

C q S u/ 13·5 8 1028 144 0·15
 S u/ 12·0 8 983 99 0·24
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and high tides before the midpoint. Although this rule
of thumb agrees with the model to within approximately
2 h, the exact timings of the maximal and minimal pre-
dictions depend, in a non-intuitive way, on the super-
position of tidal and current cycles. For example, in the
first column of  Fig. 1 maximal predictions lag the
midpoint between high and low tides by approximately 1 h,
while in the fifth column maximal predictions precede
the midpoint by approximately 1 h. The data are suffi-
ciently noisy, however, that these deviations from the rule
of thumb are probably insignificant. Model simulations
also predict that daily haul-out patterns vary with tem-
poral position within the biweekly tidal /current cycle.
For example, during the biweekly cycle, haul-out lows are
predicted to shift from earlier to later in the day, coin-
ciding with a similar shift in tide/current fluctuations.
Finally, as a consequence of the seasonally dependent
M(t) (Fig. 2), counts are predicted to be low in early
July and to reach their maximum at the end of July,
after which they once again decrease. Data trends are
generally consistent with all of these predictions (Fig. 1).

Discussion

 

Although the data trends generally comport with
deterministic model predictions, hourly counts show
considerable variability around these predictions. The
following considerations should be kept in mind when
interpreting these results.

Environmental stochasticity

Hauled-out harbour seals are highly sensitive to heat
load. Under some conditions these animals move to
the water to cool (Watts 1992), whereas under other
conditions they haul out to absorb solar radiation.
They respond to other environmental variables as well,
such as wind speed and wave intensity. These types of
environmental variables were not included in the deter-
ministic model because they cannot be predicted far
in advance. The effects of environmental stochasticity
could be dramatic: contrary to predictions, on both 15
July 1998 (Fig. 1; column 6, second day from top) and
14 July 1999 (Fig. 1; column 4, second day from top),
few seals were counted on the north beach. The morn-
ings of both days, however, followed 7–8 h of sustained
38–56 km h−1 north-north-west winds with gusts of up
to 64 km h−1 during the afternoon and evening of the
previous day. Wind waves may have discouraged north
beach landings and/or altered food availability. When
these 2 days were deleted from the analysis, the R2 value
rose from 0·40 to 0·46.

Demographic stochasticity

Harbour seals, like many large mammals, exhibit a high
degree of individual variation in behaviour (Wilson

1975). In groups of individuals that repeatedly use the
same site, individual haul-out patterns may differ markedly
(Brown & Mate 1983; Thompson et al. 1989).

Error in modelling assumptions

Alternative haul-out sites were available on Violet Point.
The east and south sides commonly contained hauled-out
animals that could not be seen from the observation
point. Although harbour seals have preferred haul-out
sites (Pitcher & McAllister 1981), it is likely that animals
change sites from time to time, especially in response to
disturbance, food availability and/or pupping activity
(Brown & Mate 1983). These possibilities are not
accounted for in the model. Furthermore, the model
ignores possible density-dependent effects such as social
facilitation and crowding.

Observational error

Counts made from the observation point were not as
accurate as aerial counts would have been, especially
under conditions of marginal light. Typically seals
clumped together and faced the same direction perpen-
dicular to the line of view and so were often difficult to
distinguish or impossible to see. Observers found
counting difficult if  the angle of vision from the hori-
zontal was less than about 8°.

      

Differential equations such as equation 2 are much
more difficult and time consuming to simulate and
parameterize than simple algebraic equations such as
equation 3, especially when they depend on environmental
variables. Differential equations must be integrated
continuously over the past environmental history using
computer software, while the algebraic equation depends
only on the current state of  the environment. Fast
recovery time after disturbance (assumption 4) intro-
duces two time scales into the problem, the time scale of
the recovery and the time scale of the environmental
variables. Multiple time scale theory then allows one to
replace equation 2 by equation 3 in the absence of sys-
tem disturbance. Thus, time scale reduction is a useful
tool for managers.

   

While assumption 4 vastly simplifies model selection,
parameterization and simulation, it also confounds
identification of E12(t) and E21(t): equations 3 and 4
depend on the ratio of the environmental functions
E21(t) and E12(t) rather than on the individual functions
themselves. The results of the model selection pro-
cedure suggest that the ratio can be expressed in the form:
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Of course, this does not imply that  and E12

= T r. The model equation 6 could have arisen from
many, indeed, infinitely many, differential equations of
the form given in equation 2. Three representative pos-
sibilities are those having:

eqn 7

eqn 8

eqn 9

Equation 7 would imply that seals on the beach
respond primarily to tide height or to a direct correlate
of tide height, while those in the water respond primarily
to current or to a direct correlate of current. This seems
more likely than the situations expressed in equations
8 and 9. In equation 8, seals on the beach respond
primarily to current and those in the water respond
primarily to tide height. In equation 9, seals on the beach
and in the water respond to both tide and current. It
seems unlikely that seals hauled out on the beach respond
directly to current; however, indirect monitoring of
current by these animals may be possible given that
current is roughly the rate of change of tide height with
respect to time (C ≈ dT/dt), depending on local wind
conditions, river discharges, basin shapes, and coastal
geometries (Anonymous 1983; Duxbury, Duxbury &
Sverdrup 2000). It was not possible to choose among
equations 7–9 on the basis of the present data set. Iden-
tification of the individual functions E12(t) and E21(t)
requires observation of seal numbers post-disturbance,
with data collected on a temporal scale much finer than
1 h as the animals return to the beach.

Assuming the situation described by equation 7, the
following functional hypothesis is suggested for seals
that use the north beach of Protection Island as a haul-
out site. Food availability peaks at flood current, which
corresponds with low haul-out numbers. Hauled-out
seals use falling tide levels as a cue to leave the beach to
feed, a trend that continues until the midway point between
low and high tides, when few or no seals remain on the
beach. A decline in flood current, however, signals a
decline in food availability so seals return to the beach.

The relationship between current and patterns of
harbour seal movement has received little attention.
Thompson et al. (1989), however, noted that harbour
seals using haul-out sites in the vicinity of Eynhallow
Sound, Orkney, UK, appeared to pattern their haul-
out behaviours differently depending on whether the
tide was rising (incoming current) or falling (outgoing
current). They hypothesized that seals that spent less
time on shore during rising tides were responding to
increases in food availability brought about by in-
coming flood tides. Their observations and hypothesis
are consistent with the model predictions presented
here for seals using Protection Island.

It is of interest that models using Ce yielded better
predictions than those using C (Table 1). Thus, it appears

that current direction may play a more crucial predictive
role than current strength. This interpretation would be
consistent with the functional hypothesis, given that food
availability is likely to be maximal at flood current regard-
less of actual current speed. It is also of interest that equa-
tion 6 performed about the same as the model including
solar elevation with  (Table 1).
Other studies have found correlations between solar ele-
vation (time of day) and haul-out behaviour (Stewart 1984;
Watts 1992; Thompson et al. 1997). These correlations
with time of day could be related to the fact that con-
secutive days have roughly similar tidal patterns; they also
could be related to the effects of heat loading that com-
monly occur about midday and afterwards (Watts 1992).

  

The methodology employed in this study is quite general.
It has been used to predict the diurnal abundance pat-
terns of loafing seabirds in a single habitat (Henson et al.
2004) as well as in a system of habitats (Damania 2004),
and can probably be used to predict the diurnal move-
ments of a variety of marine birds and mammals. A
general approach for modelling the occupancy dynam-
ics of one habitat patch is as follows.
1. Habitat census data should be collected at discrete
time intervals much shorter than the periods of environ-
mental oscillations, and should be collected throughout
the cycle of environmental change.
2. The per capita flow rates into and out of the habitat
can be assumed to be proportional to functions E12(t)
and E21(t) of environmental variables, and then incor-
porated into a two-compartment differential equation
model in the form of equation 2.
3. The form of the function M(t) that describes the
maximal habitat occupancy should be based on his-
torical maximal counts from the season of interest. The
functional form of M(t) for moulting season in seals,
for example, would most probably be different than
that for pupping season. Over short periods of  time,
M might be considered constant.
4. If  the system recovers rapidly following disturbance,
time scale analysis can reduce the differential equation
model to a simple algebraic equation for dynamics in
the absence of disturbance. The algebraic model will be
easy to parameterize and simulate.
5. A suite of alternative hypotheses for E12(t) and E21(t)
can be proposed, thereby generating a suite of candidate
models. If the candidate models do not all have the same
number of parameters, the best model should be selected
with an information-theoretic criterion such as the AIC.
6. Parameter estimation should be based on a stochastic
model that accounts for the major type of noise in the
system.
7. Ideally, an independent data set (not used for model
fitting) should be reserved or collected for the purpose
of model validation or to test a priori model predictions.
8. If the environmental variables are largely deterministic,
for example tide height, current speed, solar elevation
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and hour of the day, the model can be used to make long-
range predictions of habitat occupancies.

    
 -

As mandated by the CSA and MMPA, significant
resources are spent monitoring seal populations in the
UK and USA. Much attention has been devoted to
finding optimal times for such counts because seal popu-
lation estimates are based on maximum haul-out counts
(Pitcher & McAllister 1981; Stewart 1984; Thompson
et al. 1989, 1997; Thompson, Van Parijs & Kovacs 2001;
Adkinson, Quinn & Small 2003; Jeffries et al. 2003). The
fact that haul-out patterns vary by season and among
sites within seasons complicates this process (Sullivan
1980; Adkinson, Quinn & Small 2003; Simpkins et al.
2003). The modelling approach developed in this study
not only provides management personnel with a power-
ful tool to identify more accurately optimal census
times, but also enables them to identify the environmental
forces correlated with local haul-out, to predict haul-out
patterns into the future, and to identify times at which
to minimize human disturbance.

At the Washington study site during the pupping
season, managers can expect maximal daily haul-
outs to occur during receding tides, approximately
midway between high and low tides. The largest maxi-
mal daily haul-outs during the pupping season are
expected to occur in the last week of July. Three points,
however, must be emphasized. First, resource managers
should note that the precise environmental function

 identified in this study, along with
the parameter estimates, are probably site- and season-
specific. Each haul-out site and season may require
a new application of the model selection procedure.
Secondly, the modelling procedure is not designed to
make predictions of population size but only numbers
of hauled-out seals. Thirdly, the form of the function M(t)
depends on the seasonal context.

We wish to underscore two distinctive aspects of the
methodology in this study. First, we used an information–
theoretic criterion (in our case the AIC) instead of tradi-
tional hypothesis testing to choose the best model
from a suite of a priori alternatives. This powerful and
increasingly popular approach requires a more mech-
anistic understanding of the system, dovetails nicely
with mathematical modelling, and penalizes models for
overfitting. The information–theoretic paradigm for
modelling species’ distributions was featured in a recent
series of articles (Cabeza et al. 2004; Engler, Guisan &
Rechsteiner 2004; Frair et al. 2004; Gibson et al. 2004;
Jeganathan et al. 2004; Johnson, Seip & Boyce 2004;
Rushton, Ormerod & Kerby 2004) in the Journal of
Applied Ecology. Secondly, our mathematical approach
differs significantly from statistics-based analyses car-
ried out by previous workers (Schneider & Payne 1983;
Stewart 1984; Watts 1992; Thompson et al. 1997).
Statistics-based analyses are useful in that they allow

identification of environmental factors correlated with
dependent variables. Commonly, however, such analyses
entail data averaging, a procedure that can mask impor-
tant relationships among variables. Figure 3 shows a
graph generated when the data were averaged in rela-
tion to (a) hours before and after low tide and (b) hour
of the day. Apparent patterns emerge, but the biweekly
shift in count minima and maxima, daily haul-out pat-
tern variability and seasonal haul-out pattern variabil-
ity disappear, a result reflected in the large standard
deviations (compare Figs 1 and 3). Moreover, haul-out
censuses are often reported as proportions of  the
maximum number of seals hauled out at a site (Schneider
& Payne 1983; Stewart 1984; Watts 1992); this can also
mask informative differences among daily patterns.

For resource personnel who make management
decisions about marine bird and mammal populations, we
believe the mathematical methodology outlined in this
study (in tandem with preliminary statistical exploration)
can offer a distinct advantage over purely statistics-based
recommendations.
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