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Basins of attraction: population dynamics with two stable 4-cycles
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We use the concepts of composite maps, basins of attraction, basin switching, and
saddle fly-by’s to make the ecological hypothesis of the existence of multiple
attractors more accessible to experimental scrutiny. Specifically, in a periodically
forced insect population growth model we identify multiple attractors, namely, two
locally stable 4-cycles. Using the model-predicted basins of attraction, we examine
data time series from a Tribolium experiment for evidence of the multiple attractors.
We conclude that the multiple attractor hypothesis together with demographic
stochasticity accounts for the experimental observations.
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The prospect of multiple stable states is a prediction of
various nonlinear population models (May 1977, Kot
and Schaffer 1984, Vandermeer and Yodzis 1999, King
and Schaffer 1999, Roberds and Selgrade 2000). For
example, mathematical models with free oscillations
typically forecast multiple attractor phenomena when
subjected to periodic forcing. In particular, discrete
population models which cycle in the absence of time-
dependent factors generically develop multiple stable
oscillatory solutions when perturbed with periodic forc-
ing. In general the multiple cycles are out of phase and
may differ in average (Henson 2000, Selgrade and
Roberds 2001).

Under the experimental conditions of Desharnais and
Costantino (1980) populations of the flour beetle Tri-
bolium display 2-cycles when cultured in a constant
habitat (Dennis et al. 1995). (A 2-cycle is a periodic
solution with period two time units. In these experi-
ments the unit of time equals the larval period of two
weeks.) Mathematical theory predicts that, generically,
a population with an inherent (i.e. constant habitat)
stable 2-cycle will develop two distinct locally stable

2-cycles with the advent of period-2 forcing (Henson
2000). The latter prediction was empirically tested and
confirmed in laboratory cultures of Tribolium (Henson
et al. 1999).

Other fascinating theoretical forecasts are associated
with other forcing periods. For example, when sub-
jected to forcing of period 4, a population with an
inherent stable 2-cycle typically will develop two coex-
isting locally stable 4-cycles; and an unstable equi-
librium will give rise to an unstable 4-cycle. In this
paper, we test this hypothesis by analyzing experimen-
tal data collected in habitats forced with period 4. Our
analysis confirms the hypothesis and, as a result, pro-
vides a previously unavailable explanation for the ob-
served patterns in these data.

The multiple attractor case studied here differs from
that studied by Henson et al. (1999) in several impor-
tant ways. The period-2 study of Henson et al. (1999)
involved experimental manipulations of demographic
parameters and was designed explicitly to place the
cultures in a multiple attractor regime. In the period-4
experiment studied here, there are no such manipula-
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tions; the multiple attractors occur naturally. Further-
more, unlike the period-2 study there is no resonance
phenomenon. In both studies, we draw on the concep-
tual tools of composite maps and basins of attraction
from dynamical systems theory to connect the model
predictions with the data.

The data

The time series records that we examine were obtained
from an experiment conducted by Jillson (1980).
Twelve cultures of the flour beetle Tribolium castaneum
(Herbst) were initiated with 75 small larvae and 30
adults. The cultures were placed in 237 ml milk bottles
with 20g of standard media (95% flour, 5% dried brew-
er’s yeast by weight) and kept in an unlighted incubator
at 33°C. Every 2 weeks the larvae, pupae and adults
were counted, and returned to fresh media. Dead adults
were counted and removed.

Following the census at week 18, six cultures were
placed in a constant 20g habitat and six were assigned
to a period-4 habitat sequence of 32g, 32g, 8g, 8g, 32g,
32g, 8g, 8g and so on (see Fig. 1). Note that the average
flour volume in the period-4 habitat is the volume in
the 20g constant habitat cultures. (We take the unit of
volume to be the volume occupied by 1g of flour.) The
cultures were maintained for a total of 70 weeks.

Time series plots of larval numbers for two of the
cultures maintained in the period-4 habitat after week
18 appear in Fig, 1. There are some notable similarities
and differences between the cultures. In culture A
(replicate c6 in Jillson’s experiment) larval numbers
oscillate in a ‘‘low-high-low-high’’ fashion (in time with
the 32g-32g-8g-8g flour volume oscillation) during the
initial part and end of the experiment. The highest
peaks occur during the second 32g habitat (at weeks 20,

28, 36 and at weeks 52, 60, 68). This temporal pattern
is interrupted by an interlude between weeks 40 and 58
during which an entirely different pattern is observed.

Culture B (replicate c22 in Jillson’s experiment), on
the other hand, exhibits a ‘‘high-low-high-low’’ oscilla-
tion during the initial part of the experiment that is
out-of-phase with culture A. Moreover, in contrast to
culture A, culture B attains its highest peak larval
numbers during the first 8g habitat. However, like
culture A, culture B also displays an interlude with a
different oscillatory pattern, although for this culture
the interlude is longer, lasting from week 28 to week 66.
By the end of the time series culture B appears to have
attained an oscillation in-phase with culture A, attain-
ing its peak larval number during the second week of
the 32g habitat.

In this paper we offer an explanation for the similar-
ities and differences in the oscillatory patterns of these
two cultures. Our explanation is based on the model
predicted existence of three distinct 4-cycles, two of
which are stable and one of which is unstable.

The model

The LPA (larva, pupa, adult) model is a system of three
difference equations relating the numbers of animals at
time t+1 to the number of animals at time t :

Lt+1=bAt exp(−celLt−ceaAt) (1a)

Pt+1= (1−�l)Lt (1b)

At+1=Pt exp(−cpaAt)+ (1−�a)At (1c)

In this scheme (Dennis et al. 1995, 1997, 2001), Lt is the
number of feeding larvae (referred to as the L-stage), Pt

is the number of large larvae, pupae and callow adults
(called P-stage), and At is the number of sexually
mature adults (A-stage animals) at time t. The unit of
time is two weeks and is, approximately, the average
amount of time spent in the feeding larval stage under
our experimental conditions. The unit of time is also
approximately the average duration of the P-stage. The
quantity b is the number of larval recruits per adult per
unit of time in the absence of cannibalism. The frac-
tions �l and �a are the larval and adult rates of mortal-
ity in one unit of time. The exponential nonlinearities
account for the cannibalism of eggs by both larvae and
adults, and the cannibalism of pupae by adults. The
fractions exp(–celLt) and exp(–ceaAt) are the proba-
bilities that an egg is not eaten in the presence of Lt

larvae and At adults in one time unit. The fraction
exp(–cpaAt) is the survival probability of a pupa in the
presence of At adults in one time unit.

Fig. 1. Larval time series data of culture A (solid circles) and
culture B (open circles) from the experiment of Jillson (1980)
are shown. Habitat size (open squares) varies in the 4-cycle
pattern: 32g-32g-8g-8g.
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In order to explain deviations of data from predic-
tions of the model equations (1a)– (1c) and to carry out
statistical analyses for purposes of parameterization
and validation, we construct a stochastic version of the
LPA model containing demographic variability (Dennis
et al. 2001). In the stochastic version, we used the
binomial and Poisson distributions to describe the ag-
gregation of demographic events within the life stages.
Our stochastic demographic LPA model thus takes the
conditional one-time-step distributions of Lt, Pt, and At

to be independent, discrete probability distributions.
For the parameter estimates and stochastic simula-

tions reported in this paper, we transformed the obser-
vations so that the stochastic demographic LPA model
would be well approximated by a nonlinear autoregres-
sive (NLAR) model. A square root transformation of
the state variables L, P and A accomplishes this ap-
proximation. The resulting NLAR model, in which
noise is added to each state variable on the square root
scale, can be regarded as a general method of incorpo-
rating demographic stochasticity into a deterministic
model. The demographic nature of the stochasticity
stipulates that the noise variables be uncorrelated
through time as well as with each other within a time
unit. We take the noise variables to be normally dis-
tributed with mean 0. The resulting model has nine
parameters, the deterministic LPA model parameters b,
�l, cea, cel, cpa, �a and the three variances �1, �2, �3, of
the noise variables. We used the method of conditional
least squares to estimate these parameters from the four
control (constant 20g habitat) cultures of Jillson (1980).
The results are

b=4.766, �l=0.4087, cea=0.008462,

cel=0.04741, cpa=0.01019, �a=0.1513,

�1=7.267, �2=7.755, �3=0.4736

For more details about the stochastic demographic
LPA model see Dennis et al. (2001).

Mathematically the model defined by Eqns. (1a)– (1c)
is called ‘‘autonomous’’. This means that time does not
appear explicitly in the formulas, i.e., independently of
the state variables Lt, Pt, and At. Ecologically this is a
reflection of the fact that the model represents dynam-
ics in a constant habitat where the demographic
parameters b, �a, �l, cea, cel, and cpa are constant over
time. This LPA model has been highly successful in
explaining and predicting a variety of nonlinear pat-
terns observed in data (Cushing et al. 1998b, Caswell
2000, Mueller and Joshi 2000). Therefore, it serves as
an excellent foundation on which to base the construc-
tion of a model for populations in a fluctuating habitat.
As we will see below, in a fluctuating habitat some of
these parameters will fluctuate in time, in which case
the model is said to be ‘‘nonautonomous’’. In the more
specific case of a periodically fluctuating habitat some

of the parameters will oscillate periodically in time, in
which case the model is said to be ‘‘periodically
forced’’.

In previous studies a modification of the autonomous
LPA model proved extraordinarily successful in studies
of flour beetle responses to habitat oscillations of pe-
riod 2 (Henson and Cushing 1997, Costantino et al.
1998, Henson et al. 1999). To analyze the period-4
habitat sequence used in the Jillson experiment we
make a similar modification. To do so we assume, as in
the previous studies, that each cannibalism coefficient
in the deterministic LPA model is inversely propor-
tional to flour volume (for an empirical test that sup-
ports this assumption see Costantino et al. 1998). If cea,
cel, and cpa denote the coefficients in the 20g habitat,
then the deterministic ‘‘period-4 LPA model’’ for the
periodically forced habitat becomes

Lt+1=bAt exp
� −ceaAt−celLt

1+� [cos(�t/2)+sin(�t/2)]
�

(2a)

Pt+1= (1−�l)Lt (2b)

At+1=Pt exp
� −cpaAt

1+� [cos(�t/2)+sin(�t/2)]
�

+ (1−�a)At (2c)

with 0���1. Here � is the relative amplitude of the
forcing oscillation. Thus, for example, in the experi-
mental regime used by Jillson (1980) we have �=0.6.
The trigonometric functions are used to accommodate
the habitat sequence. For t=0, 1, 2, 3 and �=0.6 we
obtain from these functions the sequence 1.6, 1.6, 0.4,
0.4 for the denominators in Eqns. (2a) and (2c) which
corresponds to a flour volume sequence of 32g, 32g, 8g,
8g respectively. Note the autonomous model Eqns.
(1a)– (1c) are obtained by setting �=0 in the period-4
model Eqns. (2a)– (2c).

Validation of the period-4 LPA model is not a pri-
mary objective of this report. Nevertheless, we want to
point out that not only are the data sets for parameter
estimation distinct from the data sets to be analyzed,
but the biological and mathematical context of the
parameter estimation procedure (constant 20g habitat,
autonomous LPA model) is distinct from the applica-
tion (period-4 habitat, non-autonomous LPA model).
Therefore, dynamical assertions based on the model
(2a)– (2c) are pure predictions and are not fits to the
Jillson data.

Multiple attractor hypothesis

Together with the parameter estimates given in ‘‘The
model’’ section, the period-4 model (2a)– (2c) with �=
0.6 predicts two distinct, locally stable 4-cycles and an
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Table 1. Model-predicted coordinates (rounded to four significant digits) of the two locally stable 4-cycles and the unstable
4-cycle.

Stable cycle A 1st 32g habitat 2nd 32g habitat 1st 8g habitat 2nd 8g habitat

L-stage 1.430×10−2 232.4 0.2678 71.43
P-stage 42.23 0.15838.457×10−3 137.4
A-stage 71.01 87.14 83.6573.96
Stable cycle B
L-stage 75.64 4.993×10−424.41 99.95
P-stage 59.102.952×10−4 44.73 14.43
A-stage 69.61 59.08 80.84 70.45
Unstable cycle
L-stage 30.92 73.69 19.47 8.189
P-stage 4.837 18.28 43.58 11.51
A-stage 50.46 56.2546.35 52.95

unstable (saddle) 4-cycle (Table 1). Time series plots of
the larval component of these three 4-cycles appear in
Fig. 2. We note the following distinguishing features of
these 4-cycles. Relative to the 32g-32g-8g-8g oscillation
of the flour volume, the larval numbers in the stable
4-cycle denoted by A in Table 1 show a ‘‘low-high-low-
high’’ pattern with the highest peak occurring in the
second 32g habitat. In relation to this pattern, the
oscillatory pattern of larval numbers in cycle B is
out-of-phase, showing a ‘‘high-low-high-low’’ pattern
with the highest peak occurring in the first 8g habitat.
The larval numbers in the saddle 4-cycle, while peaking
in the second 32g habitat together with cycle A, have a
significantly different pattern from those of either stable
4-cycle. Instead of a repetitious ‘‘high-low’’ pattern, the
saddle 4-cycle decreases from its peak for two consecu-
tive time units after which it increases for two consecu-
tive time units.

In addition to time series, we will use two additional
conceptual tools from dynamical systems theory to
visualize and tightly connect the model predictions with
the data. The first concept is that of a composite map.
Orbits of nonautonomous models such as the periodic
LPA model should not be visualized in a three-dimen-
sional, Euclidean coordinate system, or ‘‘phase space’’,
since each triple (L, P, A) (i.e. each point in the space)
must also be identified with the time at which an orbit
is at this point in order to specify the future of the
orbit. This is because in model (2a)– (2c), the state of
the system at time t+1 depends explicitly on t as well
as on the values of Lt, Pt, and At. However, if the
model is composed with itself three times, so that orbits
correspond to every fourth step of the period-4 model,
we obtain an autonomous composite map whose phase
portrait facilitates visualization of both model predic-
tions and the data (Henson et al. 1998, 1999). Actually,
there are four different composite maps, each of whose
orbits correspond to one of t=0, 4, 8, … or t=1, 5, 9,
… or t=2, 6, 10, … or t=3, 7, 11, … in the period-4
model. Each stable (unstable) 4-cycle of the period-4
model corresponds to a stable (unstable) fixed point of
a composite model. Thus, each of the four composite

models has two stable fixed points (one for each of the
two stable 4-cycles) and one unstable fixed point (corre-
sponding to the saddle 4-cycle), all of which can be
visualized in the three-dimensional (L, P, A) phase
space.

Now that we can visualize the data and predictions in
phase space, we turn to the second concept – basins of
attraction. In a phase space, the set of all points which
give rise to model orbits approaching an attractor is

Fig. 2. The upper two plots show the larval time series for the
two stable 4-cycles (A and B in Table 1) of the deterministic
LPA model given by Eqns. (1a)– (1c) with the parameter
values given in ‘‘The model’’ section. The bottom plot shows
the larval time series of the unstable (saddle) 4-cycle.
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Fig. 3. Deterministic LPA period-4 model predictions with
�=0.6 and the parameter estimates given in ‘‘The model’’
section are displayed by means of cross-sections in phase
space. In the first row of graphs the coordinates of the stable
cycle A are plotted as solid circles in the two-dimensional
cross-sections of phase space taken at the pupal coordinate
plane. Similar plots appear in the second row of graphs for the
4-cycle B. In each graph the white area is the cross-section of
the basin of attraction for 4-cycle A, and the shaded area is the
cross-section of the basin of attraction for 4-cycle B. In the
third row of graphs one sees, again in cross-sections taken at
the pupal coordinate, the unstable 4-cycle points, which neces-
sarily lie on the boundary that separates the attracting basins
of the 4-cycles A and B.

temporal sequence corresponding to the stable cycle A,
the stable cycle B, and the unstable cycle respectively.

The format of graphs presented in Fig. 3 to visualize
the model predicted cycles also provides a powerful
way to visualize and study data. In Fig. 4, each data
point (L*, P*, A*) of culture A from the experiment is
presented in the P=P* plane of the appropriate com-
posite phase space, along with the cross-section of the
basins of attraction. One can visualize the complete
time series by reading the graphs from left to right
across rows in descending order. On the other hand,
one can see the time series for each of the four com-
posite maps by reading down the columns. Fig. 5
presents culture B in the same format.

The phase space plots in Fig. 4 and 5 show that at
week 18 culture A lay in the basin of attraction of cycle

Fig. 4. Observed (L, P, A) data for culture A are plotted in
composite phase space using the same format as in Fig. 3. The
movement of the data orbit to the basin boundary, from week
42 through week 56, corresponds to the influence of the
unstable (saddle) 4-cycle noted during the same interval in the
time series graph shown in Fig. 2.

called the basin of attraction of that attractor. Each of
the two stable fixed points in a composite map has a
three-dimensional basin of attraction in phase space.
The saddle 4-cycle lies on the boundary separating
these basins of attraction.

Three dimensional regions are difficult to draw and
visualize. In order to facilitate our study in phase space,
we present two-dimensional cross-sections in selected
P-stage planes. For example, consider the composite
map associated with the first 32g habitat, that is, the
one tracking times t=0, 4, 8, … . In Fig. 3 the first
column of graphs corresponds to this map. The first
graph from this column shows the fixed point corre-
sponding to stable cycle A, and its basin of attraction,
in a cross-section taken at the pupal coordinate P=
42.23 of the fixed point (see Table 1). The second graph
in the first column shows the fixed point corresponding
to stable cycle B, and its basin of attraction, in a
cross-section taken at the pupal coordinate P=
2.952×10−4 of that fixed point. The third graph in the
first column shows the unstable fixed point, lying on the
boundary separating the basins of attraction for cycles
A and B, in a cross-section taken at its pupal coordi-
nate P=4.837. The graphs from the second column of
graphs in Fig. 3 are interpreted similarly for the com-
posite associated with the second 32g habitat and corre-
sponding to times t=1, 5, 9, … . When read from left
to right, the three rows of graphs in Fig. 3 show the
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Fig. 5. Observed (L, P, A) data for culture B are plotted in
composite phase space using the same format as in Fig. 3. The
(L, P, A) data triples consistently remain in or close to the
basin of attraction of stable cycle B, although late in the
experiment (week 68) there appears to be a change to the basin
of stable cycle A.

predicted unstable 4-cycle (Fig. 2 and 3). Thus, within
these time periods the saddle 4-cycle is exerting a greater
influence than either of the stable 4-cycles. We refer to
this as a ‘‘saddle fly-by’’. By the end of the experiment
both cultures lie in the basin of attraction of 4-cycle A
(Fig. 4 and 5) and, as a result, have become synchronized
with the oscillatory pattern of this 4-cycle (Fig. 1 and 2).
We say culture B ‘‘switched basins’’.

The concepts of basin switching and saddle fly-by’s
complete the explanation of the data. In a completely
deterministic system, cultures cannot change from one
basin of attraction to another; initial conditions com-
pletely set the long-term outcome. Attractor basin
switching, such as occurred in culture B, happens be-
cause of stochasticity. In some cases, a stochastic event
can place a culture directly into another attractor basin
(Henson et al. 1998). In other cases, such as reported
here, the basin switching is associated with a saddle
fly-by (Henson et al. 1999).

A saddle fly-by occurs when a stochastic occurrence
places a data point near the saddle (or near its stable
manifold). As the culture ‘‘flies by’’ the saddle and
returns to an attractor, the transient dynamics exhibit
characteristics of the saddle. One characteristic of a
saddle is that nearby orbits can separate and approach
different attractors. Thus, when an orbit is near a saddle
(or more generally near the boundary separating the
basins of attraction of the stable cycles A and B)
randomness plays a large role in determining the out-
come of the fly-by. (This is reminiscent of the saddle in
the Lotka-Volterra model for competing species and the
seminal work of Leslie et al. 1968.)

Both saddle fly-by’s and basin switching involve prop-
erties of the deterministic LPA model as well as stochas-
ticity; therefore, it is important to examine the impact of
noise on the dynamic behavior of the deterministic LPA
model. Repeated simulations of the demographic
stochastic LPA model starting from the same initial
conditions produce different time series predictions.
Simulations starting from either the location of culture
A at week 18 (namely, (L, P, A)= (19, 14, 173)) or
culture B at week 18 ((L, P, A)=133, 5, 145)) typically
show a mix of patterns characteristic of the three
4-cycles, involving one or more saddle cycle fly-by’s. The
outcome of a saddle fly-by is sometimes a switch in
attractor basins, but not always. Two simulations of the
demographic stochastic LPA model (with parameter
estimates given in ‘‘The model’’ section) appear in Fig.
6. These two examples bear resemblance to the larval
time series of culture A and culture B (Fig. 1).

Discussion

In this paper we have studied data from an experiment
of Jillson (1980) in which cultures of Tribolium were

A, while culture B lay in the basin of attraction of cycle
B. Furthermore, we see that culture A remained in the
basin of attraction of cycle A until week 38 and culture
B remained in the basin of attraction of cycle B until
week 30. This explains the initial differences between the
oscillatory patterns observed in the larval components of
these two cultures, as described in ‘‘The data’’ section.

The multiple attractor hypothesis also explains the
later temporal patterns seen in both cultures. As ob-
served in ‘‘The data’’ section, the initial oscillatory
patterns of both cultures are interrupted by interludes
(from week 42 to 56 in culture A and week 28 to 66 in
culture B) during which each culture displays an oscilla-
tory pattern distinctly different from those of the two
stable 4-cycles. In fact, during these interludes both
cultures (Fig. 1) lie very close to the basin boundary (Fig.
4 and 5) and display the oscillatory pattern of the model
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grown in a periodically oscillating flour volume with
period 4 (8 weeks). We used the concepts of composite
maps, basins of attraction, basin switching, and saddle
fly-by’s to make an ecological hypothesis concerning the
existence of multiple attractors in a periodically forced
system more accessible to experimental scrutiny. The
period-4 LPA model’s prediction of two stable 4-cycles
and one unstable (saddle) 4-cycle for Jillson’s experi-
ment requires the data to match very specific geometric
phase space details of the basins of attraction forecast
by the model. If the observations are to be considered
consistent with the multiple attractor hypothesis, the
data must fall in the appropriate basins in the appropri-
ate sequence. In addition, the time series of the data
must show the oscillatory characteristics associated with
the attractor of each basin. Although these are very
demanding criteria, we have seen that the data support
the multiple attractor hypothesis.

Basin switching and the influence of saddles has been
documented, by means of the LPA model, in several
different Tribolium experiments (Cushing et al. 1998a, b,
Henson et al. 1998, 1999). For an example of basin
switching in physics, see Poon and Grebogi (1995).

A consequence of noise is an increase in the repertoire
of time series orbits: each of the locally stable attractors
can be visited along with the unstable invariant sets
which under strict deterministic theory may have little
or no impact on population time series. The signatures
of all these deterministic entities potentially become part
of the observed stochastic time series records (Earn et al.
2000). Without the benefit of an understanding of the
underlying deterministic and stochastic forces, such time
series are very difficult to interpret (Kaitala et al. 1999,
2000).

Discrete models of populations with stable inherent
oscillations in constant habitats predict multiple attract-
ing oscillatory final states in the presence of habitat
periodicity (Henson 2000). Suppose an autonomous
map with an inherent stable q-cycle is periodically
forced with period r. In the absence of forcing, the
inherent q-cycle attractor consists of q out-of-phase
stable q-cycle solutions. Henson (2000) shows that in
the advent of periodic forcing, these solutions (generi-
cally) are perturbed into q out-of-phase stable cycles
with minimal period equal to the least common multiple
(lcm) of q and r. The number of cycles which are distinct
modulo phase differences is equal to the greatest com-
mon divisor (gcd) of q and r ; that is, q lcm(q, r)-cycles
exist on gcd(q, r) attractors. The ecological translation
of the above mathematical statement leads to the iden-
tification of many testable hypotheses. For example, in
the beetle system with an inherent stable q=2-cycle
with a habitat forced with period r=3 we expect two
out-of-phase lcm(2,3)=6-cycles on gcd(2,3)=1 attrac-
tor (that is, the two 6-cycles will be phase shifts of each
other). The theorem is relevant to this paper: in a
population with an inherent stable q=2-cycle with a
habitat forced with period r=4 we expect two out-of-
phase lcm(2,4)=4-cycles on gcd(2,4)=2 different at-
tractors.

Given the generality of this mathematical prediction
we anticipate that other laboratory systems will show
similar results in the presence of periodic environmental
forcing. For example, recent studies have found stable
inherent oscillations in laboratory populations of
phycitine moths (Plodia interpunctella) (Briggs et al.
2000). Populations of these animals placed in an envi-
ronment forced with a certain period should, we predict,
yield complex cycle patterns with multiple attractors.

In closing, we return to a question posed by May
(1977): Are the dynamics of local natural populations
described by a global attractor or, rather, composed of
many locally stable attractors? Our analysis here is
based on a mathematical model and a laboratory exper-
iment; consequently, we address this question with cau-
tion. Nevertheless, the ease with which the mathematical
model leads to multiple attractors is informative. The
laboratory confirmation of the mathematical model
reinforces the suggestion that natural populations have
the potential to display the properties of multiple attrac-
tors. With the latter in mind, time series observations
from natural populations may well contain the features
of several different attractors, as well as unstable invari-
ant sets, that make up a multiple attractor system.
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Fig. 6. The solid circles show a simulation of the demographic
stochastic LPA model that begins (at week 18) at the same
initial condition as culture A shown in Fig. 1. The open circles
show a simulation that begins (at week 18) at the same initial
condition as culture B in Fig. l. Note the similarity between
these simulations and the data plots in Fig. 1.
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