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ABSTRACT. Diurnal habitat occupancy dynamics of
Glaucous-winged Gulls were evaluated in a system of six habi-
tats on and around Protection Island, Washington. Data
were collected on the rates of gull movement between habi-
tat patches, and from these data the probabilities of tran-
sitions between habitats were estimated as functions of tide
height and time of day. A discrete-time matrix model based on
the transition probabilities was used to generate habitat occu-
pancy predictions, which were then compared to hourly census
data. All model parameters were estimated directly from data
rather than through model fitting. The model made reason-
able predictions for two of the six habitats and explained 45%
of the variability in the data from 2003. The construction and
testing of mathematical models that predict occupancies in
multiple habitats may play increasingly important roles in the
understanding and management of animal populations within
complex environments.
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1. Introduction. A fundamental objective of ecology is to under-
stand how organisms utilize time and space. To what cues do organisms
respond in order to effectively carry out their daily activities? Do these
activities and movements constitute random asynchronous behavior, or
are they triggered by some internal physiological mechanism or exter-
nal environmental variable? If cues can be identified, can predictions
be made of movements based on these cues?

To answer such questions, ecologists are turning to mathematical
modeling. Recent applications of mathematics to fluctuations in lab-
oratory systems such as flour beetle (Tribolium castaneum) and mite
(Sancassania berlesei) populations and algal-rotifer communities (Bra-
chionus spp.) have demonstrated that dynamics in these systems can
be predicted with relatively simple mathematical equations. Dynamic
phenomena such as equilibria, cycles, transitions between dynamic
regimes (bifurcations), multiple attractors, stable and unstable man-
ifolds, lattice effects, and chaos have been demonstrated in the labora-
tory; see, for example, Costantino et al. [1995, 1997], Fussmann et al.
[2000], Bjørnstad and Grenfell [2001], Dennis et al. [2001], Henson et
al. [2001], Benton et al. [2002].

Despite these laboratory successes, few studies have rigorously tied
mathematical models to fluctuations in field data. The difficulties
involved in experimental manipulation and replication result in a lack
of adequate data and validated mathematical models (Cushing et al.
[1998, 2003]). Further complexity arises because dynamic patterns
typically occur across numerous temporal and spatial scales (Turchin
[1998]). The capability of predicting diurnal movements of organisms
between habitats, however, may be a prerequisite in some cases for
predicting population dynamics (Hayward et al. [2005]).

Henson et al. [2004] developed a mathematical model to predict
diurnal habitat occupancy dynamics of glaucous-winged gulls (Larus
glaucescens) resting on a pier adjacent to a large breeding colony
on Protection Island, Washington. A field test of a priori model
predictions showed that accurate forecasts of seasonal, biweekly, and
daily habitat occupancy fluctuations could be made on the basis of three
environmental variables: solar elevation, tide height, and day of year.
The model took into consideration only two locations, the pier and
elsewhere. How gulls utilized various habitat patches in “elsewhere”
was not evaluated.
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In this paper a deterministic discrete-time matrix model for the
movement of glaucous-winged gulls among six habitat patches on and
around Protection Island is constructed. Models of this type, both
deterministic and stochastic, have been used successfully in ecology.
For example, Markov chains have been used to model succession (Horn
[1975], McAuliffe [1988]) and complex community dynamics (Wootton
[2001]). In the present study, flow rate observations were used to
estimate transition probabilities as functions of tide height and time
of day. The resulting deterministic nonautonomous model was used
to generate habitat occupancy predictions, which were then compared
to hourly census data. The study illustrates some of the considerable
challenges faced when connecting mathematical models to field data.

2. Organisms and locality. This study was conducted at Pro-
tection Island National Wildlife Refuge, Jefferson County, Washington
(48◦08’N, 122◦55’W), 3.2 km from the mouth of Port Discovery Bay
at the southeastern end of the Strait of Juan de Fuca. Protection Is-
land measures 2.9 km by 0.9 km at its widest points. Eighty percent
of the island consists of high plateau bordered by 35 76 m cliffs. Low
gravel spits extend from the southeastern and southwestern ends of
the island (Wilson [1977]). The southeast spit, Violet Point (Figure
1), measures approximately 800 × 200 m and supports 2,441 pairs of
nesting glaucous-winged gulls (based on a 2004 nest count; J. Galusha
[pers. comm.]). The behavioral ecology of these birds has been ex-
tensively characterized, e.g., James-Veich and Booth [1954], Vermeer
[1963], Stout and Brass [1969], Stout et al. [1969], Stout [1975], Galusha
and Stout [1977], Hayward et al. [1977b], Amlaner and Stout [1978],
Galusha and Carter [1987], Reid [1987, 1988a, 1988b, 1988c] and Bell
[1997].

3. Data collection. Data were collected from 24 June to 10 July
2002 and 2003. Observations were made using 10x binoculars and a
20 60x spotting scope from an observation point at the top of a 33-m
bluff that borders the west end of Violet Point (Figure 1). From this
location most of the spit, except for the east beach and portions of
the south beach, could be seen. The observation point was located
100 m from the proximal edge of the nearest habitat. The presence



 
 

FIGURE 1. Aerial photo of Violet Point, Protection Island, showing the locations of

the six designated habitats in relation to the observation point.
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of observers did not seem to influence the behavior of the gulls in any
way.

We identified five distinct habitats on or around Violet Point, and
designated a sixth “Elsewhere” category for all other locations:

i. Pier: This structure consisted of wood pilings, a metal gang plank
and railings, and a concrete platform that extended into a small marina
which was closed to the public. One to three boats were usually moored
to this structure but were not considered part of this habitat.

ii. Marina: This was a small body of water near the proximal end of
Violet Point. The Marina was accessible by boat through an artificial
inlet on the south side of Violet Point.

iii. Colony: This was the main area used by gulls for nesting and
breeding on Violet Point. This area was interspersed with patches
of gumweed (Grindellia integrifolia), various grasses, and other low
vegetation. A 159-m2 sample area located just north of the Marina
was used for counts. To account for the difference in numbers of birds
between the sample colony area and the entire colony, a scaling factor
was calculated as the ratio of the sample nest count (n = 18) to the
whole colony nest count (n = 2, 441), or 18/2, 441 = 1/135.61.

iv. Beach: This was a 113-m pebble- and cobble-covered sample
stretch along the north beach of Violet Point. The sample area
appeared to contain a relatively high density of birds compared to
some other portions of the beach. To account for the difference in
numbers of birds between the sample beach area and the entire beach,
a scaling factor was determined in the following way: The total length
of visible beach along Violet Point was 1,675 m, whereas the summed
lengths of seven sample areas of varying density monitored in 1999 was
541 m. Thus, the total visible beach length was 1, 675/541 times the
summed lengths of the seven sample areas. The highest number of gulls
occupying the seven sample areas was 625. Under the assumption of
an even dispersion pattern, the highest number of gulls using the total
visible beach was estimated to be (1, 675/541)(625) = 1, 935. During
2002 and 2003, the highest number of gulls counted in the single 113-m
sample stretch of beach was 377. The scaling factor was determined
to be the ratio of the maximum observed number of gulls using the
sample area to the inferred maximum number using the entire beach,
or 377/1, 935 = 1/5.13.
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v. Water: This referred to the pelagic regions of the ocean bordering
Violet Point extending approximately 200 m out from the beach. The
sample area in 2002 was the ocean bordering the north beach. In
2003, however, occupancy observations inadvertently included both
north and south water. A scaling factor was determined by comparing
the summed north water counts for 2002 to corresponding north-south
water counts in 2003. The ratio was 1/2.2. Day 191 in 2003 experienced
considerably higher temperatures (> 25.6◦C) than other days that year
(= 22.8◦C). This may have caused the unusually high numbers of gulls
seen in the water on day 191 in 2003; consequently, counts for day 191
in both years were omitted from the calculation of the scaling factor.

vi. Elsewhere: All other locations. Gulls not present within the
other five habitats were placed in this category. No observations were
made within this “habitat.”

At the top of each hour, from 0500-2000 PST (Pacific Standard
Time), gull occupancy counts were made for each habitat i. Gull move-
ment data were collected during 2-hr observation periods, carried out at
0500 0700, 0900 1100, 1400 1600, and 1800 2000 on most Tuesdays,
Wednesdays, and Thursdays, and on other days with less consistency.
Observation periods were chosen to represent early morning, late morn-
ing, mid-afternoon, and late afternoon/evening gull activity patterns,
see Section 5. The 2-hr observation periods were chosen as a com-
promise between the need for an adequate sample size and a need to
minimize observer fatigue. During each observation period, the fol-
lowing data were collected for each non-Elsewhere habitat, with the
sequences of habitats observed determined randomly:

a. Arrival and departure rates: Each of the five habitats was observed
for 5 min, and numbers of all gulls entering and leaving this habitat
were recorded.

b. Destinations of departing gulls: Gulls departing from each habitat
were watched until they reached their destinations. Departing gulls
were watched consecutively and one at a time; thus, if more than one
gull was flying from the habitat at the same time, only the first to
leave was followed and recorded. More gulls departed than could be
individually followed. This necessitated use of a 15-min count period
per habitat to obtain an adequate sample size, rather than the 5-min
period used for arrivals and departures. Gulls flying to any point in
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the entire beach or colony were recorded as moving to that habitat.
Therefore, flow to these two areas was scaled down by the appropriate
scaling factors. The remaining part of the flow to these two areas was
considered flow to Elsewhere.

c. Behaviors of gulls in each habitat were sampled for 2 3 min (during
2002 only): Behavior scan counts were recorded by voice on a tape
recorder and subsequently transcribed. Behavior designations followed
Phillips [2004, Table 1]. Behaviors that accounted for less than 1%
of those in a given habitat were combined into an “Other” category.
Terrestrial (Pier, Colony, Beach) and aquatic (Marina, Water) habitats
were evaluated separately. Chi-square tests were used to determine if
distributions of behavior counts differed by habitat. Statistical tests
were carried out at the p < 0.05 level of significance.

4. The model. It was assumed that gulls moved among all six
habitats. Per capita flow rates (gull movements) from habitat j to
habitat i, denoted by rij , were assumed to depend on the time of day t
and height of tide T (t), that is, rij = rij(t, T (t)). During a small time
step h > 0, each gull in habitat j has some probability pij of moving
to habitat i. The pij depend on the flow rates rij and thus depend
on time of day and tide height: pij = pij(t, T (t)). If the pij and the
numbers of gulls in each habitat are known at time t and tide T , then
occupancy predictions can be generated for time t + h by the matrix
equation

(1)

⎛
⎜⎜⎜⎜⎜⎝

N1(t + h)
N2(t + h)
N3(t + h)
N4(t + h)
N5(t + h)
N6(t + h)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

p11 p12 p13 p14 p15 p16

p21 p22 p23 p24 p25 p26

p31 p32 p33 p34 p35 p36

p41 p42 p43 p44 p45 p46

p51 p52 p53 p54 p55 p56

p61 p62 p63 p64 p65 p66

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

N1(t)
N2(t)
N3(t)
N4(t)
N5(t)
N6(t)

⎞
⎟⎟⎟⎟⎟⎠

,

where Ni(t) is the occupancy of habitat i at time t. Each probability
must satisfy 0 ≤ pij ≤ 1, and each column of the matrix must sum to
one; that is,

∑6
i=1 pij = 1 for each j. The model (1) can be written

more succinctly as

(2) x(t + h) = M(t, T (t))x(t),

where x(t) is the vector of habitat occupancies and M(t, T (t)) is the
matrix of transition probabilities.
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The following two sections explain how the continuous-time per capita
flow rates rij were estimated from the data and how the discrete-time
transition probabilities pij were computed from the rij .

TABLE 1. Bin categories for glaucous-winged gull movement data by habitat and

time of day on Protection Island. Flow-rate data were subdivided into four ranges

of time and quarters of tide to form 16 bins. The time categories were extended

from the original 2-hour observation periods to account for all daylight hours. M1

through M16 represent transition matrices. Subscripts indicate bin numbers.

Time (PST) Tide height, m

−0.8128 0.0343 0.0344 0.8815 0.8816 1.7287 1.7288 2.5761

0500 0759 M1 M2 M3 M4

0800 1229 M5 M6 M7 M8

1230 1659 M9 M10 M11 M12

1700 2000 M13 M14 M15 M16

5. Estimating flow rates rij from data. Flow rate data were
arranged according to time of day and tide height in the following way:
The hours of the day were divided into the unequal ranges 0500 0759,
0800 1229, 1230 1659 and 1700 2000, each of which contained one of
the 2 hr observation periods. The ranges were of unequal size be-
cause extensive previous experience with these birds suggested that
phases of colony activity were of unequal lengths, e.g., Hayward et
al. [1977b], Galusha and Hayward [2002], Henson et al. [2004]. For
example, in early morning, large numbers of gulls left the colony for
distant feeding sites; in mid- to late morning, colony residents engaged
in maintenance activities, e.g., preening, tending to chicks, etc.; in
early to mid-afternoon, residents tended to be quieter and exhibit more
rest posture; and in late afternoon and evening, residents returned in
large numbers from distant feeding areas. Tide heights were divided
into the quarters -0.8128 0.0343 m, 0.0344 0.8815 m, 0.8816 1.7287 m,
and 1.7288 2.5761 m. This procedure yielded 16 possible time-tide
combinations or “bins” (Table 1; bin numbers correspond to matrix
designations). Flow rate observations that occurred in the same bin
for the same habitat were considered replicates. Numbers of repli-
cates per bin per habitat varied from 1 to 9. Six bins did not con-
tain data in 2002 (1, 6, 8, 9, 13, 14), and four bins did not con-
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tain data in 2003 (8, 9, 13, 14). These bins either did not contain
data for all habitats or the time-tide combinations did not occur dur-
ing the observation periods. Tide predictions were obtained from the
National Oceanic and Atmospheric Administration (NOAA, website
[http://140.90.78.170/pred retrieve.shtml?input code=100001101ppr&
type=pred&station=9444900+Port+Townsend+,+WA]). Port Town-
send tide heights were multiplied by a Protection Island correction
factor of 0.93 (Anonymous [1998]).

Within each bin, the per minute per capita flow rates rij from habitat
j to habitat i were assumed to be constant and were estimated as
follows:

i. The per minute per capita departure rate from habitat j (depj)
was estimated by dividing the total number of departures observed
during 5 min from habitat j by the total observed occupancy of habitat
j at the closest census time, then dividing this value by 5:

(3) depj =

∑
replicates (departures from habitat j per 5 min)

5
∑

replicates (occupancy of habitat j)
.

Disturbances and lack of visibility caused some occupancy counts to be
omitted. In such cases the average of the remaining replicate occupancy
counts was calculated and substituted.

ii. The proportion of gulls departing from habitat j that moved
to habitat I (propij) was determined by dividing the total number of
gulls followed from habitat j to habitat I by the total number of gulls
followed from habitat j during the 15 min observation period:
(4)

propij =

∑
replicates (no. followed from habitat j that went to habitat i)∑

replicates (total no. followed from habitat j)
.

Note that propjj is the proportion of departing gulls that returned to
habitat j without landing in any other habitat.

iii. The per capita flow rate for birds flying from habitat j to habitat
i was calculated by multiplying the per capita departure rate from
habitat j, given in equation (3), by the proportion of departing gulls
that move to habitat i, given in equation (4):

rij = (depj)(propij).
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Note that rjj is the per capita flow rate of birds leaving habitat j that
return to habitat j without landing in another habitat.

Some of the departing gulls that were followed landed outside the
designated habitats or flew out of sight. These gulls were counted as
flying to Elsewhere, which enabled calculation of r6j for each habitat
j. The per capita flow rates ri6 from Elsewhere to other habitats could
not be observed directly and were computed in the following way:

a. Let K denote the total number of birds that utilized the sample
areas of all habitats. The value of K changes during the season;
however, K was assumed constant during the data collection period.
The value of K was estimated by summing the occupancies across the
five non-Elsewhere habitats for each hourly census made during 2002
and 2003. K was designated as the largest of these summed occupancies
(616 at 2000 hours on 28 June 2002, and 596 at 2000 hours on 10 July
2003). At 2000 hours it was assumed that gulls were no longer away
feeding, so that the occupancy of Elsewhere was zero and all birds were
accounted for in the non-Elsewhere censuses.

b. At each time t, the occupancy for Elsewhere was taken to be the
difference between K and the sum of the observed occupancies of the
five censused habitats:

n6(t) = K −
5∑

j=1

nj(t),

where nj(t) is the observed occupancy of the jth habitat at time t.

c. The per capita flow rate rij from habitat j to habitat i multiplied
by the observed habitat occupancy nj of habitat j is the total number
of birds leaving habitat j for habitat i per minute. Thus, the product
rijnj can also be interpreted as the number of arrivals per minute in
habitat i from habitat j. In each non-Elsewhere habitat i, the number
of arrivals per minute from all habitats except Elsewhere can therefore
be expressed as

∑5
j=1 rijnj . The difference between this sum and the

observed arrivals would be due to arrivals from Elsewhere. For each
bin, the observed number of arrivals per 5 min and the occupancies were
averaged over the replicates. For each habitat i, the number arrivalsi

represented the mean number of arrivals per 5 min, and n̄i represented
the mean occupancy count. The value arrivalsi was divided by 5
and then compared to the sum

∑5
j=1 rij n̄j . In each case the number
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of averaged observed arrivals was larger than the calculated arrivals∑5
j=1 rij n̄j for the corresponding habitat and bin. The discrepancy

between these two values was attributed to arrivals from Elsewhere
ri6n̄6. The per minute per capita flow rate from Elsewhere to habitat
i was therefore calculated as:

ri6 =
1
n̄6

(
arrivalsi

5
−

5∑
j=1

rij n̄j

)
.

6. Estimating transition probabilities pij from flow rates rij.
The transition matrix M(t, T (t)) in equation (2) was estimated from
the data under the assumption that its entries remained constant within
each bin. This gave rise to 16 constant matrices, which were designated
M1 through M16, Table 1. The entries pij of the 16 transition matrices
were computed in the following way:

a. Let Δt be a small unit of time. The probability that a gull in
habitat j will depart for habitat i during Δt units of time is rijΔt,
and the probability that a bird in habitat j will not depart to habitat
i during Δt is 1 − rijΔt.

b. The probability that a gull in habitat j will depart during Δt is∑6
i=1 rijΔt. The probability that a bird in habitat j will not depart is

1 − ∑6
i=1 rijΔt.

c. Assuming that “not departing during Δt time units” is an
independent event, the probability of not departing habitat j during
m time intervals of length Δt is (1 − ∑6

i=1 rijΔt)m. Hence, the
probability of not departing during h minutes (one model time step) is
(1 − ∑6

i=1 rijΔt)h/Δt.

d. Because Δt is vanishingly small, the probability of not departing
habitat j during h minutes is actually

lim
Δt→0

(
1 −

6∑
i=1

rijΔt

)h/Δt

= lim
Δt→0

exp
[

ln
(

1 −
6∑

i=1

rijΔt

)h/Δt]

= lim
Δt→0

exp
[

h

Δt
ln

(
1 −

6∑
i=1

rijΔt

)]
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= lim
Δt→0

exp
[
h

−∑6
i=1 rij

1 − ∑6
i=1 rijΔt

]

= exp
[
− h

6∑
i=1

rij

]
,

by L’Hopital’s rule. Thus, the probability of departing habitat j during
h minutes is

(5) 1 − exp
[
− h

6∑
i=1

rij

]
.

e. The probability pij of departing habitat j for habitat i �= j during
h minutes is therefore the product of the probability of departing, given
in equation (5), and the probability that a gull moves to habitat i given
that it departs habitat j, given in equation (4):

pij =
(

1 − exp
[
− h

6∑
k=1

rkj

])
(propij).

It is straightforward to verify that for i �= j,

pij =
(

1 − exp
[
− h

6∑
k=1

rkj

])(
rij∑6

k=1 rkj

)
.

f. The probability pjj is the probability that a bird in habitat j either
does not depart, or else departs and returns directly to habitat j. Thus,

pjj = exp
[
− h

6∑
i=1

rij

]
+

(
1 − exp

[
− h

6∑
i=1

rij

])(
rjj∑6

k=1 rkj

)
.

Note that for each j the probability of either departing to one of the
six habitats or not departing is one:

∑6
i=1 pij = 1.

There were 360 transition probabilities for 2002 (36 entries in each
of 10 6× 6 transition matrices corresponding to the 10 bins containing
data), and 432 transition probabilities estimated for 2003 (36 entries
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in 12 matrices/bins). All transition probabilities are given in Phillips
[2004].

7. One-step model predictions. Since all model parameters were
estimated directly from data, no model fitting procedures were carried
out. To evaluate model performance, hourly predictions of habitat oc-
cupancies were generated using a mathematical programming language
called GNU Octave (http://www.octave.org). Given an observed cen-
sus vector y(t) at hour t as an initial condition, the model was iterated
60/h times to produce a prediction vector x(t + 1) for the next hour
t + 1. Predictions thus generated are known as “conditioned one-step
predictions,” because each prediction is conditional given the observa-
tion at the previous hour. In this usage, “one-step” refers to one hour,
and not one model time step h. The residual error at hour t + 1 is
ρ(t + 1) = y(t + 1) − x(t + 1), that is, the difference between the ob-
served and predicted occupancies at hour t+1. For an observed hourly
time series of length q, the residual sum of squares (RSS) for a single
habitat is therefore

RSS =
q∑

t=2

(ρ(t))2.

For the system of habitat patches, the overall RSS was taken to be the
sum of the RSS for the individual habitats.

Goodness-of-fit as measured by

(6) R2 = 1 − RSS∑q
t=2 (observation − mean)2

was computed for each habitat, where “mean” denotes the mean of the
observations for that habitat. For the entire set of habitats, R2 was
computed as

R2 = 1 − overall RSS∑
habitats [

∑q
t=2(observation − mean)2]

,

where “mean” denotes the mean of the observations for the appropriate
habitat. R2 estimates the proportion of the observed variability that
is explained by the model and provides a measure of the accuracy of
model predictions.
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Since the occupancies for Elsewhere were computed rather than
observed, they were not included in the calculations of RSS and R2.

8. Results. A model time step of h = 4 min yielded the best
goodness-of-fit. Table 2 compares the R2 goodness-of-fit estimates
between hourly counts and predictions for 2002 and 2003. Pier and
Beach R2 values for 2003, with 25% of bins empty, exceeded those for
2002, with 37.5% of bins empty. The model explained a large part
of the variability of census data for the Pier and Beach. Predictions
and counts for the Pier tended to decrease in the morning, rise in the
afternoon, and then peak toward 2000 hours (Figure 2A). A general
increase toward the end of the day was seen in predictions and counts
for the beach (Figure 2D).

R2 values for the remaining habitats were negative; this means that
the model did worse than a horizontal line would have done for pre-
dicting data. Although model predictions were of the right order of
magnitude, the model did not successfully predict the diurnal fluctu-
ations within the Marina, Colony, or Water. Numbers of gulls in the
Marina were usually fairly constant during the day, although often
with some increase late in the day (Figure 2B). Peak counts were made

TABLE 2. R2 goodness-of-fit values for comparisons between glaucous-winged gull

habitat occupancy observations and predictions on Protection Island during the

2002 and 2003 breeding seasons. A model time step of h = 4 min gave the best

R2 values. Negative R2 values reflect the fact that the mean of the observations fit

the data better than the model did, i.e., there was little variability in the observed

data.

Habitat R2 (2002) R2 (2003)
1. Pier 0.2460 0.6320
2. Marina -0.0289 -0.0775
3. Colony -0.2977 -1.6043
4. Beach 0.2749 0.4442
5. Water -0.0262 -0.0012
Overall 0.2238 0.4522
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FIGURES 2A 2F. One-step model predictions (black circles) of gull habitat occupancies, on and
around Protection Island, point matched against the observations (open circles) in relation to tide
(line). Each panel represents one day of observation. Day of the year is noted at the top lefthand
corner of each panel, with days in 2003 shown in parentheses. The horizontal axis is the hour of the
day, and the vertical axis is the number of birds in the habitat. Some observations in the Water on
days 176, 179, (177), and (191), exceeded the y-axis and are represented by crossed out circles. The
vertical scale for the tide curve is -1 to 3 m.
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FIGURE 2B.
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during some midday hours when temperatures were highest. Numbers
of gulls in the Colony showed little variability; generally there was a
slight decrease in numbers during the middle of the day followed by
an increase during the evening (Figure 2C). Except for peaks in the
midday hours, predictions and counts for the Water were also rather
constant (Figure 2E).

Model predictions and estimated “counts” for Elsewhere showed a
peak in mid- to late morning, followed by a general decrease in the
evening hours, an inverse relationship compared with other habitats
(Figure 2F). Since the occupancies for Elsewhere were computed rather
than observed, they were not included in the calculations of RSS and
R2.

Statistical tests for behaviors (Phillips [2004]) showed that behavior
frequencies differed significantly by habitat in both terrestrial and
aquatic environments (Figure 3). The following behaviors were more
common than expected: Pier Stand Rest, Stand Sleep and Stand
Preen; Colony Sit Upright, Sit Rest, Stand Upright, Stand Rest,
Walk and Other; Beach Sit Sleep, Stand Preen, Walk and Other;
Marina Float; Water Bathe, Drink and Preen.

9. Discussion. Short-term fluctuations in habitat occupancies are
likely to be driven by the functional needs of birds (DeWoskin [1980],
Cody [1985], Walsberg [1985]). To carry out various behaviors such as
preening, feeding, and resting, etc., gulls need to be in appropriate envi-
ronments (Cooke and Ross [1972], Wondolowski [2002]). For example,
gulls tended to congregate in the Marina or Water on very warm days
to float, bathe, and preen, and presumably unload heat (Damania et al.
[2005]). Gulls used the terrestrial habitats primarily for sleeping, sit-
ting, standing, resting and/or preening behaviors, generally referred to
as loafing (Henson et al. [2004]). Behaviors on the colony also included
those associated with territorialism.

The Pier and Beach yielded the best goodness-of-fit R2 values, partly
because these two habitats experienced large fluctuations in gull occu-
pancies. A habitat with large fluctuations around its mean occupancy
will have a higher R2 than a habitat with an equal model error RSS
but relatively constant occupancies. This is because a larger denomina-
tor in equation (6) leads to a higher R2 value. The Marina, Colony, and
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FIGURE 3. Percentages of behaviors exhibited most frequently by glaucous-
winged gulls in each habitat on and around Protection Island. The category
“Other” included behaviors which accounted for less than 1% of those counted
within that habitat. Chi-square analysis was used to test the hypothesis
that distributions of behaviors differed among habitats; expected values were
determined under the assumption of identical distributions across habitats.
Habitats in terrestrial and aquatic environments were analyzed separately.
Behavior designations follow Phillips [2004, Table 1].

Water showed much less variability in counts, which led to correspond-
ingly smaller R2 values.

Because the model made reasonable predictions for the censused habi-
tats with large fluctuations in counts, the predictions for Elsewhere also
should have been reasonable. Indeed, the results show distinct “occu-
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pancy” patterns for Elsewhere (Figure 2F) that make biological sense,
even though occupancy data were not collected for that habitat. The
maximum “occupancy” in Elsewhere always coincided with the lowest
tides, possibly as a result of increased food availability at low water
levels in other locations, as demonstrated in other studies (Patterson
[1965], Drent [1967], Galusha and Amlaner [1978], Wondolowski [2002],
Henson et al. [2004]). At higher tides gulls were expected to be dis-
tributed throughout the five non-Elsewhere habitats. Model predic-
tions suggested such a trend.

Although counts showed a general relationship with trends in model
predictions, considerable deviation occurred between the two. This
deviation might have been due to several factors:

i. Disturbance: Human disturbances occurred mainly on the Pier
and Colony, whereas flyovers by Bald Eagles (Haliaeetus leucocephalus)
commonly influenced all the habitats (Galusha and Hayward [2002]).
Gulls often responded to eagle disturbances with cyclonic “panic
flights” (Hayward et al. [1977a]).

ii. Environmental variables: Whereas time of day and tide appar-
ently functioned as the primary driving forces for count fluctuations
in some habitats (Henson et al. [2004]), no doubt other factors also
were involved. Additional weather variables, including temperature,
wind speed and direction, rain, and humidity also could have influ-
enced habitat selection. Flow to the Marina, for example, seemed to
be driven more by temperature than by time or tide (Damania et al.
[2005]); hence, observations for this habitat showed considerable devia-
tion from model predictions. Thus, studies of additional environmental
factors beyond tide height and time of day are needed to more accu-
rately predict gull habitat occupancies. Variables such as temperature,
however, cannot be used to develop long-range predictions.

iii. Visibility: The number of boats moored at the Pier not only
altered visibility but also affected the area available for loafing. Al-
though gulls on boats were excluded, higher numbers of gulls on the
Pier would be expected if boats were not present. Count inaccuracies
also may have occurred due to limited visibility during poor lighting
conditions such as during fog and low solar elevation.
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iv. Sampling and binning: Sample times may not have been represen-
tative of movement patterns across habitats. Calculated flow rates may
have been biased due to greater or lesser flow during non-observation
hours. Although data were collected at discrete time intervals much
shorter than the periods of the tidal and diurnal cycles (Hunt and
Schneider [1987], Levin [1992], Silverman et al. [2001]), the scale on
which flow rates were binned and averaged was nonetheless rather
coarse. Binning at a finer scale may have produced better predictions,
but would have required considerably more data.

v. Low counts: Small numbers of departures during some observa-
tion periods and small occupancies in some habitats undoubtedly gave
rise to considerable error in estimates of many of the per capita flow
rates. In particular, the Water generally showed the lowest occupancies
(Figure 2E), making reasonable predictions for this habitat difficult.

vi. Density-dependence and nesting behavior: Although some per
capita flow rates may have depended on the density of gulls in the origin
or destination habitats, the model did not take this into account. Unlike
the other habitats, the Colony consisted of defended territories. Colony
dynamics were probably tied to breeding behaviors that may have been
driven by aggressive encounters or other factors beyond simply time of
day and tide height.

vii. Social facilitation: Gulls appeared to move to and from other
habitats independently of other gulls, except during disturbances and
when assembling into feeding groups. This possibility, however, remains
unconfirmed. Other studies have found that social facilitation does
play a role in at least some movement patterns of gulls (Evans [1982],
Wittenberger and Hunt [1985], Götmark et al. [1986]).

Studies that closely tie mathematical models of diurnal distribution
to field data are rare in the literature. Exceptions include the study
by Henson et al. [2004] described in the introduction, and a study by
Hayward et al. [2005] who developed a deterministic model to predict
seal haul-out patterns at Protection Island. Hayward et al.’s best
model explained 40% of the variability in hourly haul-out censuses.
Silverman et al. [2001] developed a stochastic model for the dynamics of
mixed species waterfowl aggregations that described migration between
two “Colonies” in a closed system. Finally, Damania et al. [2005],
in a continuous-time companion paper to this study, used differential
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equations based on environmental variables to model the dynamics of
gulls in the Protection Island system of habitats. The Damania et
al. [2005] model greatly increased accuracy by including the effects of
temperature and solar elevation.

Mathematical models typically are tied to data using free constants
called “parameters.” Parameters are estimated by fitting the model to
data using statistical procedures appropriate for the kind of noise in
the system. All of the related studies mentioned above utilized model
parameterization techniques such as sequential least squares. It should
be emphasized that the model developed in this paper involved no
free parameters and no model fitting. Instead, the parameters were
estimated directly from observations of flow rates.

In this paper the matrix model could not be iterated indefinitely into
the future because some bins contained missing data. Data collection
plans for the future include provisions for filling in the “missing bins,”
which will allow the model to be run for longer periods of time. A
future paper will address the asymptotic dynamics as well as stochastic
versions of the matrix model.

10. Conclusion. Results from this study suggest that gull move-
ments on and around Protection Island are correlated with a variety of
environmental cues, especially time of day and tide height. This sug-
gests that in some cases complicated fluctuations of animal abundance
in the field are influenced by deterministic forces and can be mathemat-
ically modeled. Successful development of models that predict animal
movements could lead, among other benefits, to safer scheduling at air-
ports to reduce the chance of bird/aircraft collisions, improvements in
public health measures to control the spread of animal vector-borne
diseases, and better resource management policies.
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