Teaching It Twice:
The effects of spaced encoding and textbook type on student learning in a general education cognitive science course.

Karl G. D. Bailey
Behavioral Sciences Department & Behavioral Neurosciences Program, Andrews University
kgbailey@andrews.edu

INTRODUCTION

• Effective learning in the post-secondary classroom requires students to complete a significant amount of reading outside of class (Simpson & Nist, 2002); professors often expect students to gather information from texts that will not be covered in class.

• Spaced encoding (learning information multiple times with significant amounts of time in between each exposure) tends to lead to stronger memories and increased likelihood of retrieval (Bahrick, Bahrick, Bahrick, & Bahrick, 1993; Den Planter, 1987)

• The selection of textbooks and the schedule of readings devised by an instructor might be used to build spaced encoding into the course.

RESEARCH QUESTIONS

• How will teaching the content of an interdisciplinary cognitive science course twice during a semester affect students’ knowledge of key concepts?

• Will a traditional textbook be more effective than a popular paperback at increasing students’ knowledge of key concepts?

COURSE & AUDIENCE

This study took place in an interdisciplinary cognitive science course at Andrews University called ‘Dealing with Your Mind’. This course...

SCHEDULE OF READINGS

• Students read the traditional textbook first, followed by the popular paperback during Fall semester; the order was reversed Spring semester.

• Because these textbooks had significant overlap in content, topics were covered twice during the semester, at approximately two month intervals (as described anecdotally by de Winstanley & Bjork, 2002 for an introductory psychology course), as opposed to covering related material on multiple consecutive days at one point during the semester.

• As a result, students were exposed to concepts at widely, rather than closely, spaced intervals.

ASSESSMENT

• Student knowledge of course content was assessed using the Neuroscience Literacy Questionnaire (NLQ; Herculano-Houzel, 2002), which was developed for assessing the knowledge of the general public during a museum exhibition on neuroscience (similar to the goals of general education).

• A measurement of neuroscientist consensus exists for the NLQ, yielding a subset of 58 questions; answers for the full set of 83 questions were derived from the textbooks themselves.

• Subjects gave either agree, disagree, or “don’t know” responses to 95 psychological and neuropsychological statements (83 factual, 12 opinion).

• Control group: students enrolled in an upper division physiological psychology course prior to starting the course and immediately following the course; intended to control for interest and prior exposure and to identify an upper limit on student correct response rates.

RESULTS

• At the beginning of the semester, scores for both textbook order groups were substantially lower than the control group on both the full set and the neuroscientist-normed subset sets of NLQ questions.

• At mid-semester (after completing the first textbook), both groups’ average scores had reached the initial level of the upper-division controls, regardless of the textbook used first. This was a significant change in knowledge level.

• Because these textbooks had significant overlap in content, topics were covered twice during the semester, at approximately two month intervals (as described anecdotally by de Winstanley & Bjork, 2002 for an introductory psychology course), as opposed to covering related material on multiple consecutive days at one point during the semester.

• As a result, students were exposed to concepts at widely, rather than closely, spaced intervals.

IMPLICATIONS

• Given that the majority of increases in knowledge occur prior to mid-semester, it appears that students can cope with the pace of the two-textbook course.

• Only a main effect of time was present during the first half of the semester and there was no main effect of textbook order nor any interaction between time and textbook order; thus, it appears that a popular paperback can be as effective in this setting as a traditional textbook.

• Consistent increases in test scores despite the option to drop a test suggest that the teaching technique may be a means of utilizing spaced encoding effects in the classroom to aid the consolidation of curriculum into robust long-term memories.

LIMITATIONS

• This technique requires students to purchase a second textbook for the course; with larger texts, students may feel rushed to complete the reading in half a semester. However, the textbook could be combined with a set of journal articles or teacher-created materials in an upper-division class.

• Because of a last minute change in the time the course was offered during the Spring semester, enrollment was lower during that semester; second semester students may have had higher overall motivation – however, no interaction was present.

• The increase in learning may reflect an effect of the instructor rather than, or to a greater degree than any effect of textbook type; nevertheless, these results suggest that students can acquire content quite rapidly, allowing for application and synthesis activities during the latter half of the semester.

……………………………………

RESULTS

Control subjects (20 subjects): 56.1% correct responses for all 83 Qs; 69.6% correct responses for 58 neuroscientist consensus 12 Qs prior to course.

62.6% correct responses for all 83 Qs; 73.4% correct responses for 58 neuroscientist Qs at the end of the course.