> Fxponential and fogarithmic Functions

Chapter 6

- This Slideshow was developed to accompany the textbook
- Big Ideas Algebra 2
- By Larson, R., Boswell
- 2022 K12 (National Geographic/Cengage)
- Some examples and diagrams are taken from the textbook.

6-07 Exponent סProperties and e
 (5.2, 6.2)

After this lesson.

- I can simplify expressions with exponents.
- I can simplify expressions involving e.
- I can rewrite expressions with e as decimals.

6-01 Exponent Properties and e (5.2, 6.2)

- Using Properties of Rational Exponents
- $x^{m} \cdot x^{n}=x^{m+n}$ (Product Property)
- $(x y)^{m}=x^{m} y^{m}$ (Power of a Product Property)
- $\left(x^{m}\right)^{n}=x^{m n}$ (Power of a Power Property)
- $\frac{x^{m}}{x^{n}}=x^{m-n}$ (Quotient Property)
- $\left(\frac{x}{y}\right)^{m}=\frac{x^{m}}{y^{m}}$ (Power of a Quotient Property)
- $x^{-m}=\frac{1}{x^{m}}$ (Negative Exponent Property)

6-01 Exponent Properties and e (5.2, 6.2)

smpiry the expression. oriteyour answer using only positive

- $6 b^{0}$
exponents.
- Example 292\#3
- $\left(\frac{3 w}{2 x}\right)^{4}$

$$
\begin{gathered}
\left(\frac{3 w}{2 x}\right)^{4}=\frac{3^{4} w^{4}}{2^{4} x^{4}}=\frac{81 w^{4}}{16 x^{4}} \\
6 b^{0}=6 \cdot 1=6
\end{gathered}
$$

6-07 Exponent Properties and e (5.2, 6.2)

- Called the natural base
- Named after Leonard Euler who discovered it
- (Pronounced "oil-er")
- Found by putting really big numbers into $\left(1+\frac{1}{n}\right)^{n}=2.718281828459 \ldots$
- Irrational number like π

6-07 Exponent Properties and e (5.2, 6.2)

- Just treat e like a regular variable
- $\frac{11 e^{9}}{22 e^{10}}$
- Example (305\#5)
- $\left(5 e^{7 x}\right)^{4}$

$$
\begin{aligned}
& \left(5 e^{7 x}\right)^{4}=5^{4} e^{7 x \cdot 4}=625 e^{28 x} \\
& \frac{11 e^{9}}{22 e^{10}}=\frac{1}{2} e^{9-10}=\frac{1}{2} e^{-1}=\frac{1}{2 e}
\end{aligned}
$$

6-07 Fxponent Properties and e $(5.2,6.2)$

- Evaluate the natural base
expressions using your calculator
- $y=2 e^{0.4 t}$
- Example 305\#29
- Rewrite in the form $y=a b^{x}$
- $y=e^{-0.75 t}$

$$
\begin{gathered}
y=e^{-0.75 t}=\left(e^{-0.75}\right)^{t}=0.472^{t} \\
y=2 e^{0.4 t}=2\left(e^{0.4}\right)^{t}=2(1.492)^{t}
\end{gathered}
$$

6-01 Exponent Properties and e (5.2, 6.2)

- Assignment (20 total)
- Properties of Exponents: 292\#1-4;
- Simplifying e : 305\#1-10 odd;
- Changing e to decimal: 305\#25-28 all;
- Mixed Review: 306\#43, 45, 51, 53 (no graph), 55 (no graph)

6-02 Exponential Growth and Decay functions (6.1)

After this lesson..

- I can identify and graph exponential growth and decay functions.
- I can write exponential growth and decay functions.
- I can solve real-life problems using exponential growth and decay functions.

How much work will be done the last week of school?
Formula is 2^{n-1}
Plug in $36: 2^{36-1}=3.436 \times 10^{10}$ seconds $\rightarrow 9544371.769$ hours $\rightarrow 397682.157$ days \rightarrow 1088.8 years

6-02 Exponential Growth and Decay Functions (6.1)

 . Work with a partner.Calculate how much time you will spend on your homework the last week of the 36 -week school year. You start with 1 second of homework on week one and double the time every week.

6-02 Exponential Erowth and Decay Functions (6.1)

- $y=b^{x}$
- Base (b) is a positive number other than 1

- Exponential Growth

- Always increasing and rate of change is increasing
- $b>1$
- y-intercept is $(0,1)$
- Horizontal asymptote $y=0$
- b is the growth factor

6-02 Exponential Growth and Decay functions (6.1)

- Always decreasing and rate of change is decreasing
- $0<b<1$
- y-intercept is $(0,1)$
- Horizontal asymptote $y=0$
- b is the decay factor

6.02 Exponential Growth and Decay Functions (6.1)

- Example 298\#9
- Determine whether each function represents exponential growth or exponential decay. Then graph the function.

$$
f(x)=\left(\frac{1}{6}\right)^{x}
$$

$b=1 / 6<1$ exponential decay

6.02 Exponential Growth and Decay Functions (6.1)

- Try $298 \# 11$.
- Determine whether each function represents exponential growth or exponential decay. Then graph the function.

$$
y=\left(\frac{4}{3}\right)^{x}
$$

$b=4 / 3>1$ exponential growth

6-02 Exponential Growth and Decay Functions (6.1)

ш

- Example: 298\#20
- The population P (in millions) of Peru during a recent decade can be approximated by $P=28.22(1.01)^{t}$, where t is the number of years since the beginning of the decade.
- (a) Determine whether the model represents exponential growth or decay
- (b) identify the annual percent increase or decrease in population
- (c) Estimate when the population was about 30 million
a) Base is $1.01>1$ growth
b) $1.01=1+r \rightarrow 0.01=r=1 \%$
c) $30=28.22(1.01)^{t}$

$$
\begin{aligned}
& 1.063=1.01^{t} \\
& \log _{1.01} 1.063=\log _{1.01} 1.01^{t} \\
& 6.15=t
\end{aligned}
$$

about 6.2 years since the beginning of the decade

6.02 Exponential Growth and Decay Functions (6.1)

-
- Try 298\#19
- The value of a mountain bike y (in dollars) can be approximated by the model $y=200(0.65)^{t}$, where t is the number of years since the bike was purchased.
- (a) Determine whether the model represents exponential growth or decay
- (b) Identify the annual percent increase or decrease
- (c) Estimate when the value of the bike will be $\$ 50$
a) Base $=0.65<1$ decay
b) $0.65=1-r \rightarrow-0.35=-r \rightarrow r=0.35=35 \%$
c) $50=200(0.65)^{t}$

$$
\begin{aligned}
& 0.25=0.65^{t} \\
& \log _{0.65} 0.25=\log _{0.65} 0.65^{t} \\
& 3.22=t
\end{aligned}
$$

about 3.2 years after it was purchased

6-02 Exponential Growth and Decay Functions (6.1)

स"w火w

- $A=P\left(1+\frac{r}{n}\right)^{n t}$
- Example: $299 \# 39$
- $A=$ amount at time t
- $P=$ principle (initial amount)
- Find the balance in the account earning compound interest after 6 years when the principle is $\$ 3500$. $r=2.16 \%$, compounded quarterly
- $r=$ annual rate
- $n=$ number of times interest is compounded per year
- Try 299\#41

$$
\begin{gathered}
A=P\left(1+\frac{r}{n}\right)^{n t} \\
A=3500\left(1+\frac{0.0216}{4}\right)^{4(6)}=\$ 3982.92 \\
A=3500\left(1+\frac{0.0126}{12}\right)^{12(6)}=\$ 3688.56
\end{gathered}
$$

6-02 Exponential Erowth and Decay Functions (6.1)

- Assignment: 20 total
- Graphing Exponential Growth and Decay: 298\#7-15 odd
- Exponential Growth and Decay Models: 298\#19-22, 44
- Compound Interest: 299\#35, 39, 40, 41, 42
- Mixed Review: 300\#53, 54, 55, 61, 63

6-03 ORewrite Exponential as fogarithmic functions (6.3)

After this lesson...

- I can evaluate logarithms.
- I can rewrite exponential equations as logarithmic equations.
- I can rewrite logarithmic equations as exponential equations.
(2 -
- $\log _{b} a=$ exponent of b to get a
- $\log _{3} 3$
- Example: 312\#13
- $\log _{3} 81$
$\log _{3} 81$
$3^{x}=81$
$x=4$

Can use trial and error
$\log _{3} 3$
$3^{x}=3$
$x=1$

- (Some calculators can do log of any base.)
- Example: 312\#23
- $\log 6$

$$
\begin{aligned}
& \log 6=0.778 \\
& \ln \frac{1}{3}=-1.099
\end{aligned}
$$ (42 м.

- Definition of Logarithm with Base b
$\cdot \log _{b} y=x \Leftrightarrow b^{x}=y$
- Read as "log base b of y equals x "
- Logs $=$ exponent!!!

Logs and exponentials are inverses

- They undo each other
- They cancel each other out
$3^{2}=9$
$8^{0}=1$
$5^{-2}=1 / 25$
- Example: 312\#1
- Rewrite as an exponential
- Rewrite as a log
- $\log _{3} 9=2$
- $6^{2}=36$

Base $=3$, exponent $=2$, other $=9$	$\log _{3} 9=2$
$3^{2}=9$	
Base $=6$, exponent $=2$, other $=36$	$6^{2}=36$
	$\log _{6} 36=2$

(2. .

- If exponential with base b and log
- $\log _{3} 3^{2 x}$ with base b are inside each other, they cancel
- Example: 312\#31
- $7^{\log _{7} x}$

$$
\begin{gathered}
7^{\log _{7} x}=7^{\log _{7} x}=x \\
\log _{3} 3^{2 x}=\log _{3} 3^{2 x}=2 x
\end{gathered}
$$

- Assignment (20 total)
- Evaluate logs: 312\#13, 15, 17, 23, 25
- Rewrite logs as exponentials: 312\#1, 3, 5
- Rewrite exponentials as logs: 312\#7, 9, 11
- Simplify expressions: 312\#31, 33, 35, 37
- Mixed Review: 314\#75, 77, 79, 83, 85

6-04 Logarithmic PProperties (6.5)

After this lesson...

- I can expand logarithms.
- I can condense logarithms.
- I can evaluate logarithms using the change-of-base formula.
6.04 Jogarithmic PProperties (6.5)
- Product Property
- $\log _{b} u v=\log _{b} u+\log _{b} v$
- Quotient Property
- $\log _{b} \frac{u}{v}=\log _{b} u-\log _{b} v$
- Power Property
- $\log _{b} u^{n}=n \log _{b} u$

6-04 Logarithmic OProperties (6.5)

expand logarithms

- Rewrite as several logs
- Example: 327\#13
- $\log 10 x^{5}$

$$
\log 10 x^{5}
$$

Product property
$\log 10+\log x^{5}$
Power property

$$
\log 10+5 \log x
$$

Simplify

$$
\begin{gathered}
1+5 \log x \\
\ln \frac{x}{3 y}
\end{gathered}
$$

Quotient and power properties $\ln x-\ln 3-\ln y$

6-04 Jogarithmic Properties (6.5)

ondense logs

- Try to write as a single log
- $6 \ln x+4 \ln y$
- Example: 327\#25
- $\log _{5} 4+\frac{1}{3} \log _{5} x$

$$
\log _{5} 4+\frac{1}{3} \log _{5} x
$$

Power Property

$$
\log _{5} 4+\log _{5} x^{\frac{1}{3}}
$$

Product Property

$$
\log _{5}\left(4 x^{\frac{1}{3}}\right)
$$

Write as radical (because of fractional exponent)

$$
\log _{5} 4 \sqrt[3]{x}
$$

$$
6 \ln x+4 \ln y
$$

Power Property

$$
\ln x^{6}+\ln y^{4}
$$

Product property

$$
\ln x^{6} y^{4}
$$

6-04 Jogarithmic PProperties (6.5)

- $\log _{c} u=\frac{\log _{b} u}{\log _{b} c}$
- Evaluate $\log _{4} 7$
- This lets you evaluate any log on a calculator
- Example: 327\#31
- Evaluate $\log _{9} 15$

$$
\begin{gathered}
\log _{9} 15=\frac{\log 15}{\log 9}=1.232 \\
\log _{4} 7=\frac{\log 7}{\log 4}=1.404
\end{gathered}
$$

6-04 Jogarithmic Properties (6.5)

- Assignment: 20 total
- Expand logs: 327\#11-17 odd
- Condense logs: 327\#21-27 odd
- Change-of-base formula: 327\#29-35 odd
- Problem Solving: 327\#37-38 (Use $L=10 \log \frac{I}{10^{-12}}$)
- Mixed Review: 328\#46, 47, 51, 57, 59, 61

6-05 Graph Exponential and Logarithmic functions (6.4)

After this lesson.

- I can graph exponential functions.
- I can graph logarthmic functions.
- I can find inverses of exponential and logarithmic functions.

6-05 Graph fxponential and fogarithmic functions (6.4)

 - Example:320\#17- (a) Describe the transformations. (b) Then graph the function.

$$
g(x)=-2^{x-3}
$$

Transformations: $a=-1, h=3, k=0$
Reflection in x-axis ($-a$) and shift 3 to right
Horizontal asymptote: $y=0$

Transformations: $a=1, \mathrm{c}=2, h=0, k=0$
Horizontal shrink by factor of $1 / 2$
Horizontal asymptote: $y=0$

- Logarithms and exponentials are inverses
- x and y are switched
- Graphically, reflected over $y=x$
- Horizontal asymptote becomes vertical asymptote

- a is vertical stretch
- If a is - , reflect over x-axis
- c is horizontal shrink
- Shrink by $\frac{1}{c}$
- If b is -, reflect over y-axis
- h is horizontal shift
- k is vertical shift
- Vertical asymptote: $x=h$

To put in calculator, you might need to use change-of-base formula

$$
\begin{aligned}
& y=\log _{3} x \\
& y=\frac{\log x}{\log 3}
\end{aligned}
$$

- Example:320\#27
- (a) Describe the transformations. (b)

Then graph the function.
$g(x)=-\log _{1 / 5}(x-7)$

Transformations: $a=-1, h=7, k=0$
Reflection in x-axis ($-a$) and shift 7 to right
Vertical asymptote: $x=7$

Transformations: $a=3, h=0, k=-5$
Vertical stretch by factor of 3 ; vertical shift up 5
Vertical asymptote: $x=0$

- Find the inverse
- Isolate log or exponential part
- Switch x and y
- Then rewrite as exponential or log
- Example: 313\#47
- $y=\ln (x-1)$

$$
\begin{aligned}
& y=\ln (x-1) \\
& x=\ln (y-1)
\end{aligned}
$$

Base $=\mathrm{e}$, exponent $=\mathrm{x}$, other $=\mathrm{y}-1$

$$
\begin{aligned}
& y-1=e^{x} \\
& y=e^{x}+1 \\
& y=5^{x}-9 \\
& y-9=5^{x} \\
& x-9=5^{y}
\end{aligned}
$$

Base $=5$, exponent $=y$, other $x-9$

$$
y=\log _{5}(x-9)
$$

- Assignment: 15 total
- Graph Exponential Functions: 320\#15, 17, 21
- Graph Logarithmic Functions: 313\#57, 59; 320\#25, 27
- Find Inverses: 313\#43, 45, 47, 51
- Mixed Review: 322\# 53, 55, 62, 65

6-06 סolve Exponential and Logarithmic Equations (6.6)

After this lesson..

- I can solve exponential equations.
- I can solve logarithmic equations.

Solving Exponential Equations

- Method 1) if the bases are equal, then exponents are equal
- Example: 334\#3
- $5^{x-3}=25^{x-5}$

$$
5^{x-3}=25^{x-5}
$$

Write at same base

$$
5^{x-3}=5^{2(x-5)}
$$

Since bases are same, exponents are the same

$$
\begin{gathered}
x-3=2(x-5) \\
x-3=2 x-10 \\
-3=x-10 \\
7=x
\end{gathered}
$$

$$
2^{3 x+5}=2^{1-x}
$$

Since bases are same, exponents are the same

$$
\begin{gathered}
3 x+5=1-x \\
4 x+5=1 \\
4 x=-4 \\
x=-1
\end{gathered}
$$

- Method 2) take log of both sides
- $3 e^{4 x}+9=15$
- Example: 334\#9
- $5(7)^{5 x}=60$

$$
\begin{gathered}
5(7)^{5 x}=60 \\
7^{5 x}=12
\end{gathered}
$$

Log both side with base 7

$$
\begin{gathered}
\log _{7} 75 x=\log _{7} 12 \\
5 x=\log _{7} 12 \\
x=\frac{\log _{7} 12}{5} \approx 0.255 \\
3 e^{4 x}+9=15 \\
3 e^{4 x}=6 \\
e^{4 x}=2
\end{gathered}
$$

Log both sides with base e

$$
\begin{gathered}
\ln e^{4 x}=\ln 2 \\
4 x=\ln 2 \\
x=\frac{\ln 2}{4} \approx 0.173
\end{gathered}
$$

- Solving Logarithmic Equations
- Method 1) if the bases are equal, then logs are equal
- Example 334\#17
- $\ln (4 x-12)=\ln x$

$$
\ln (4 x-12)=\ln x
$$

Since logs are the same, the stuff in logs are the same

$$
\begin{gathered}
4 x-12=x \\
-12=-3 x \\
4=x
\end{gathered}
$$

$$
\log _{2}(3 x-4)=\log _{2} 5
$$

Since logs are the same, the stuff in the logs are the same

$$
\begin{gathered}
3 x-4=5 \\
3 x=9 \\
x=3
\end{gathered}
$$

- Method 2) exponentiating both
- $\log _{3}(2 x+1)=2$ sides
- Make both sides exponents with the base of the log
- Example: 334\#21
- $\log _{2}(4 x+8)=5$

$$
\log _{2}(4 x+8)=5
$$

Exponentiate with base 2

$$
\begin{gathered}
2^{\log _{2}(4 x+8)}=2^{5} \\
4 x+8=32 \\
4 x=24 \\
x=6 \\
\log _{3}(2 x+1)=2 \\
\\
3^{\log _{3}(2 x+1)}=3^{2} \\
2 x+1=9 \\
2 x=8 \\
x=4
\end{gathered}
$$

Exponentiate with base 3

теш中

- Assignment (20 total)
- Solve Exponential Equations: 334\#1, 3, 5, 7, 9, 11, 13
- Solve Logarithmic Equations: 334\#17, 19, 21, 22, 23, 25, 27, 29
- Mixed Review: 336\#75, 77, 79, 83, 87

6-07 Modeling with Exponential and Logarithmic functions (6.7)

After this lesson.

- I can use a common ratio to determine whether data can be represented by an exponential function.
- I can use technology to find exponential models and logarithmic models for sets of data.
 - Choosing Functions to Model Data
- For equally spaced x-values
- If y-values have common ratio (multiple) \rightarrow exponential
- If y-values have finite differences $\boldsymbol{\rightarrow}$ polynomial

6-07 Modeling with Fxponential and Logarithmic functions (6.7)

T2 -- Determine the type of function represented by each table.

- Example: 342\#3

\boldsymbol{x}	5	10	15	20	25	30
\boldsymbol{y}	4	3	7	16	30	49

\boldsymbol{x}	0	3	6	9	12	15
\boldsymbol{y}	0.25	1	4	16	64	256

Finite differences

| 4 | 3 | 7 | 16 | 30 | 49 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| -1 | 4 | 9 | 14 | 19 | |

$2^{\text {rd }}$ order differences are constant \rightarrow quadratic

Common ratio $r=4 \rightarrow$ exponential

graphing calculator

- TI-84
- Enter points in STAT \rightarrow EDIT
- To see points go $Y=$ and highlight Plot1 and press ENTER to keep it highlighted
- Press Zoom and choose ZoomStat
- Go to STAT \rightarrow CALC \rightarrow ExpReg for exponential OR LnReg for logarithmic
- Choose Regression from homescreen
- In Data tab, enter points
- Go to Graph tab
- To change regression type, press OK and choose a different regression
- Read the answer off the bottom of the graph
(17.
 and show an exponential relationship. Then write a function that models the data.

\boldsymbol{x}	1	6	11	16	21
\boldsymbol{y}	12	28	76	190	450

- Example 342\#20

\boldsymbol{x}	-3	-1	1	3	5
\boldsymbol{y}	2	7	24	68	194

Use technology

$$
\begin{gathered}
y=11.12(1.77)^{x} \\
y=8.88(1.21)^{x}
\end{gathered}
$$

 м

- Assignment: 15 total
- Determine Type of Model: 342\#1-4
- Find Model from Table: 342\#19, 20, 21, 22, 30, 31, 32
- Mixed Review: 344\#39, 41, 47, 49

