

- By Larson, R., Boswell, L., Kanold, T. D., & Stiff, L.
- 2011 Holt McDougal
- Some examples and diagrams are taken from the textbook.

Slides created by Richard Wright, Andrews Academy rwright@andrews.edu

7.1 Graph Exponential Growth Functions

- $y = a \cdot 2^x$
 - y-intercept = a
 - x-axis is the asymptote of graph

7.1 Graph Exponential Growth Functions

- Exponential Growth Function
 Properties of the graph • $y = a \cdot b^{x-h} + k$
- To graph
 - Start with y = b^x • Multiply y-coordinates by
 - а • Move up k and right h
 - (or make table of values)
- y-intercept = a (if h and k=0)
- y = k is asymptote • Domain is all real numbers
- Range
- y > k if a > 0
- y < k if a < 0

7.1 Graph Exponential Growth Functions Graph • $y = 3 \cdot 2^{x-3} - 2$

7.1 Graph Exponential Growth Functions

• Exponential Growth Model (word problems)

- $y = a(1 + r)^{t}$
 - $\circ\,$ y = current amount
 - \circ a = initial amount
 - \circ r = growth percent
 - \circ 1 + r = growth factor
 - \circ t = time

7.1 Graph Exponential Growth Functions

- Compound Interest
- $A = P\left(1 + \frac{r}{n}\right)^{nt}$
 - \circ A = current amount
 - \circ P = principle (initial amount)
 - r = percentage rate
 - \circ n = number of times compounded per year
 - \circ t = time in years

7.1 Graph Exponential Growth Functions If you put \$200 into a CD (Certificate of Deposit) that earns 4% interest, how much money will you have after 2 years if you compound the interest monthly? daily?

				1				
			1					
					/	_		
<								
	T 7	_	1	1/	1	х		
	У	-	t	14	- 1		1	
	-		-		-			
							7	
			_	-	/	_		

7.2 Graph Exponential Decay Functions

● Graph

7.2 Graph Exponential Decay Functions

• Exponential Decay Model (word problems)

- $y = a(1 r)^t$
 - \circ y = current amount
 - \circ a = initial amount
 - \circ r = decay percent
 - \circ 1 r = decay factor
 - \circ t = time

7.2 Graph Exponential Decay Functions

A new car cost \$23000. The value decreases by 15% each year. Write a model of this decay. How much will the car be worth in 5 years? 10 years?

7.3 Use Functions Involving e

- In math, there are some special numbers like π or i
- Today we will learn about e

7.3 Use Functions Involving e

• e

- Called the natural base
- Named after Leonard Euler who discovered it • (Pronounced "oil-er")
- Found by putting really big numbers into $\left(1 + \frac{1}{n}\right)^n = 2.718281828459...$
- Irrational number like $\boldsymbol{\pi}$

7.3 Use Functions Involving e

• Simplifying natural base • $(2e^{-5x})^-$ expressions

- Just treat *e* like a regular variable
- $\frac{24e^8}{8e^5}$

7.3 Use Functions Involving e

• Evaluate the natural base expressions using your calculator

• e³

• e^{-0.12}

7.3 Use Functions Involving *e* • To graph make a table of values • $f(x) = a \cdot e^{rx}$ • a > 0• If $r > 0 \rightarrow \text{growth}$ • If $r < 0 \rightarrow \text{decay}$ • Graph $y = 2e^{0.5x}$

7.3 Use Functions Involving e

- Compound Interest
- $A = P\left(1 + \frac{r}{n}\right)^{nt}$
 - A = current amount
 - $\circ~P$ = principle (initial amount)
 - r = percentage rate
 - n = number of times compounded per year
- t = time in years Compounded continuously
 - $A = Pe^{rt}$

7.4 Evaluate Logarithms and Graph Logarithmic Functions Definition of Logarithm with Base b $\odot \log_h y = x \iff b^x = y$ • Read as "log base b of y equals x" • Rewriting logarithmic equations • $\log_3 9 = 2 \rightarrow$ • $\log_5(1/25) = -2 \rightarrow$

7.4 Evaluate Logarithms and Graph Logarithmic Functions © Special Logs • log_b 1 = 0 • log_b b = 1

- Evaluate
- log₄ 64
- $\log_2 \frac{1}{8}$
- log_{1/4} 256

7.4 Evaluate Logarithms and Graph Logarithmic Functions • Using a calculator • Common Log (base 10)

- $\log_{10} x = \log x$
- Find log 12

• Natural Log (base e)

- $\log_e x = \ln x$
- Find ln 2

7.4 Evaluate Logarithms and Graph Logarithmic Functions

• When the bases are the same, the base and the log cancel

• $5^{\log_5 7} = 7$

$\odot \log_3 81^x$

۲ $= \log_3 3^{4x}$

۲ = 4x

7.4 Evaluate Logarithms and Graph Logarithmic Functions

Switch x and y

• Finding Inverses of Logs

• $y = \log_8 x$

- $x = \log_8 y$
- y = 8^x Rewrite to solve for y
- To graph logs
 - Find the inverse
 - Make a table of values for the inverse
 - Graph the log by switching the x and y coordinates of the inverse.

7.5 Apply Properties of Logarithms

Product Property

- $\log_b uv = \log_b u + \log_b v$
- Quotient Property
 - $\log_b \frac{u}{v} = \log_b u \log_b v$
- Power Property
 - $\log_b u^n = n \log_b u$

7.5 Apply Properties of Logarithms

- Use $\log_9 5 = 0.732$ and $\log_9 11 = 1.091$ to find
 - $\log_9 \frac{5}{11}$
 - log₉ 55
 - log₉ 25

7.5 Apply Properties of Logarithms

• Expand: $\log_5 2x^6$ • Condense: $2 \log_3 7 - 5 \log_3 x$

7.5 Apply Properties of Logarithms

- Change-of-Base Formula
 - $\log_c u = \frac{\log_b u}{\log_b c}$
- Evaluate log₄ 8

7.6 Solve Exponential and Logarithmic Equations

- Solving Exponential Equations
 - Method 1) if the bases are equal, then exponents are equal
 - $2^{4x} = 32^{x-1}$

7.6 Solve Exponential and Logarithmic Equations Solving Exponential • $5^{x+2} + 3 = 25$

Equations

- Method 2) take log of both
- sides
- 4^x = 15

7.6 Solve Exponential and Logarithmic Equations

- Solving Logarithmic Equations
 - Method 1) if the bases are equal, then logs are equal
 - $\log_3(5x-1) = \log_3(x+7)$

7.6 Solve Exponential and Logarithmic Equations

- Solving Logarithmic Equations
 - Method 2) exponentiating both sides

 Make both sides exponents with the base of the log
 - $\log_4(x+3) = 2$

7.6 Solve Exponential and Logarithmic Equations

• $\log_2 2x + \log_2(x-3) = 3$

7.7 Write and Apply Exponential and

Power Functions

• Just as 2 points determine a line, so 2 points will determine an exponential equation.

7.7 Write and Apply Exponential and Power Functions

- Exponential Function
 y = a b^x
- If given 2 points
 - Fill in both points to get two equations
 - Solve for a and b by substitution

7.7 Write and Apply Exponential and Power Functions

• Find the exponential function that goes through (-1, 0.0625) and (2, 32)

7.7 Write and Apply Exponential and

Power Functions

- Steps if given a table of values
 - Find ln y of all points
 - Graph ln y vs x
 - Draw the best fit straight line
 - Pick two points on the line and find equation of line (remember to use ln y instead of just y)
 - Solve for y
- OR use the ExpReg feature on a graphing calculator
 - Enter points in STAT \rightarrow EDIT
 - Go to $\dot{STAT} \rightarrow CALC \rightarrow ExpReg \rightarrow Enter \rightarrow Enter$

7.7 Write and Apply Exponential and Power Functions

Writing a Power Function
 y = a x^b

- Steps are the same as for exponential function
 - Fill in both points to get two equations
 - Solve for a and b by substitution

7.7 Write and Apply Exponential and Power Functions

 $\odot~$ Write power function through (3, 8) and (9, 12)

7.7 Write and Apply Exponential and

Power Functions

- Steps if given a table of values
 - Find ln y and ln x of all points
 - Graph ln y vs ln x
 - Draw the best fit straight line
 - Pick two points on the line and find equation of line (remember to use ln y and ln x instead of just y)
 - Solve for y
- OR use the PwrReg feature on a graphing calculator
 - Enter points in STAT \rightarrow EDIT
 - Go to STAT \rightarrow CALC \rightarrow PwrReg \rightarrow Enter \rightarrow Enter