Sequences and Series

Algebra 2 Chapter 12

Algebra II 12

This Slideshow was developed to accompany the textbook
 Larson Algebra 2 By Larson, R., Boswell, L., Kanold, T. D., & Stiff, L. 2011 Holt McDougal Some examples and diagrams are taken from the textbook.

Slides created by Richard Wright, Andrews Academy rwright@andrews.edu 12.1 Define and Use Sequences and Series
Sequence
Function whose domain are integers
List of numbers that follow a rule
2, 4, 6, 8, 10

Finite
2, 4, 6, 8, 10, ...
Infinite

n is like x, a_n is like y

12.1 Define and Use Sequences and Series
♦ Rule
♦ a_n = 2n
♦ Domain: (n)
♦ Term's location (1st, 2nd, 3rd...)
♦ Range: (a_n)
♦ Term's value (2, 4, 6, 8...)

 $2/5^1$, $2/5^2$, $2/5^3$, $2/5^4$, ... $\rightarrow a_n = 2/5^n$

2(1)+1, 2(2)+1, 2(3)+1, ... → $a_n = 2n + 1$

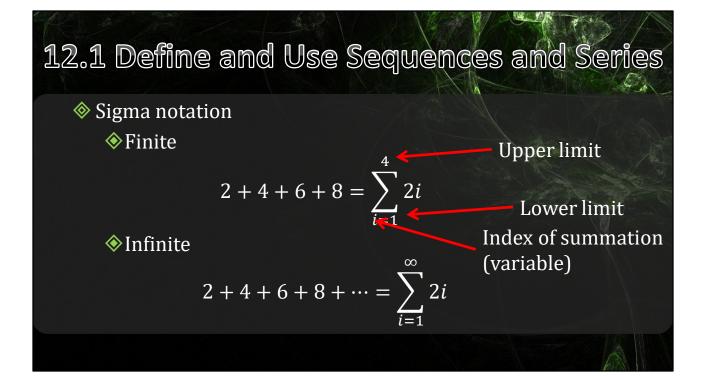
12.1 Define and Use Sequences and	d Series
♦ To graph	
$\oint n$ is like x; a_n is like y	
♦ The graph will be dots	
♦ Do NOT connect the dots	J. J. S.
40	
30	♦
20	•
10	
0 2	4 6

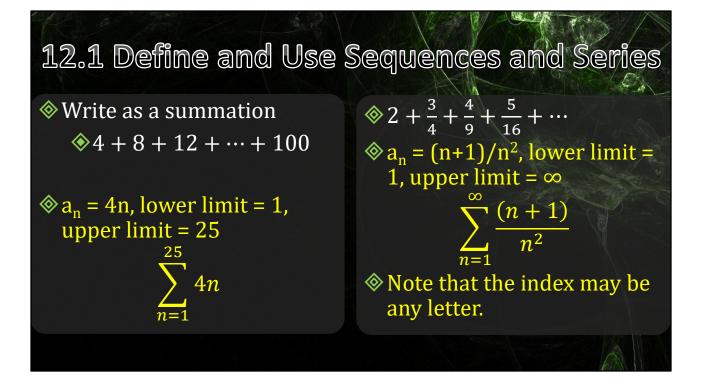
The n's are integers so there is no values between the integers.

12.1 Define and Use Sequences and Series

♦ Series

- ♦ Sum of a sequence
- $\diamond 2$ + 4 + 6 + 8 + · · · \rightarrow series





 $a_n = 4n$, lower limit = 1, upper limit = 25 $\sum_{n=1}^{25} 4n$ $a_n = (n+1)/n^2$, lower limit = 1, upper limit = ∞ $\sum_{n=1}^{\infty} \frac{(n+1)}{n^2}$ Note that the index may be any letter. 12.1 Define and Use Sequences and Series

♦ Find the sum of the series

$$\sum_{k=5}^{10} k^2 + 1$$

 $(5^{2} + 1) + (6^{2} + 1) + (7^{2} + 1) + (8^{2} + 1) + (9^{2} + 1) + (10^{2} + 1)$ $(10^{2} + 1)$ (361)

 $5^2 + 1 + 6^2 + 1 + 7^2 + 1 + 8^2 + 1 + 9^2 + 1 + 10^2 + 1 = 361$

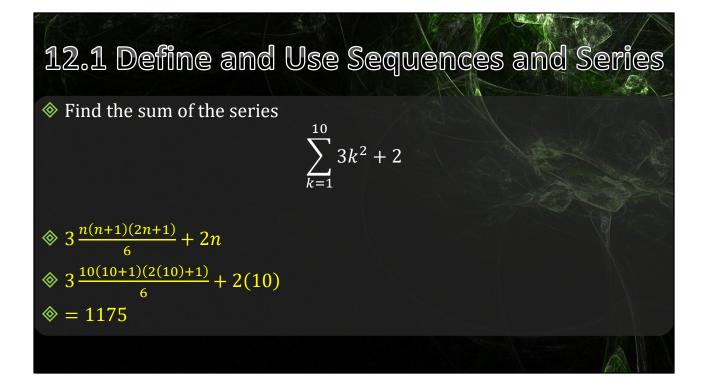
12.1 Define and Use Sequences and Series

Some shortcut formulas

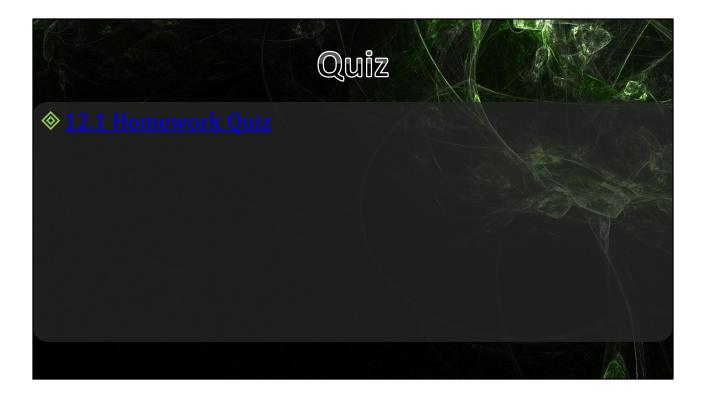
$$\sum_{i=1}^{n} 1 = n$$

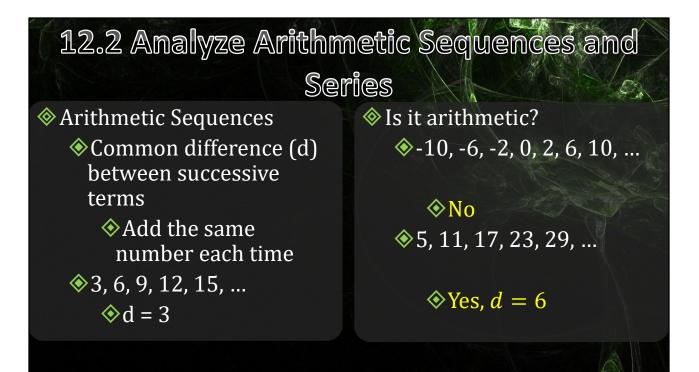
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

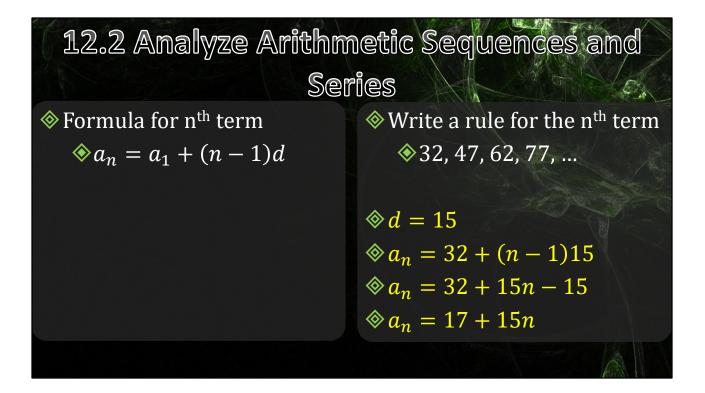


$$3\frac{n(n+1)(2n+1)}{6} + 2n = 3\frac{10(10+1)(2(10)+1)}{6} + 2(10) = 1175$$

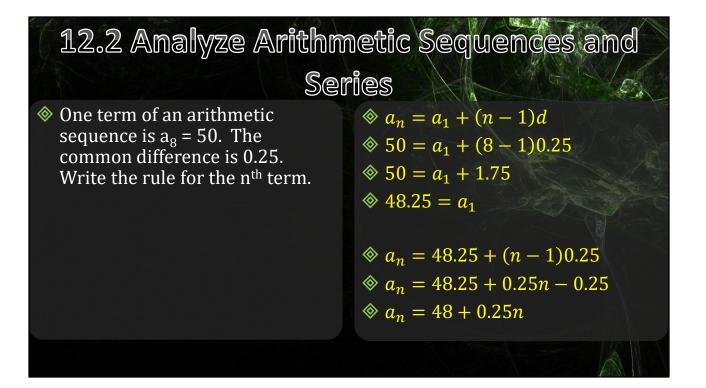




No Yes, d = 6

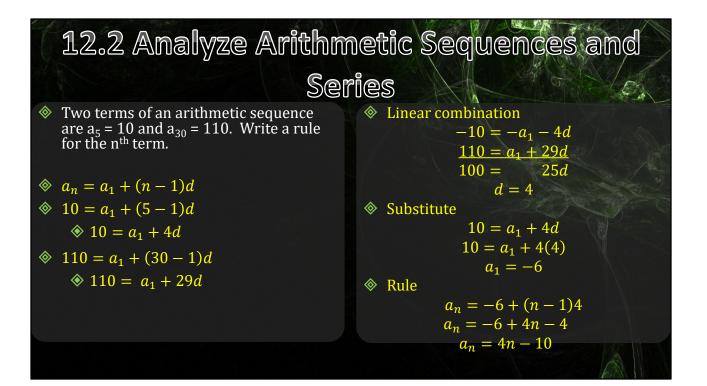


d = 15 $a_n = 32+(n-1)15 = 32+15n-15 \rightarrow a_n = 17 + 15n$



$$a_n = a_1 + (n - 1)d$$

 $50 = a_1 + (8 - 1)0.25 \rightarrow 50 = a_1 + 1.75 \rightarrow 48.25 = a_1$
 $a_n = 48.25 + (n - 1)0.25 \rightarrow a_n = 48.25 + 0.25n - 0.25 \rightarrow a_n = 48 + 0.25n$

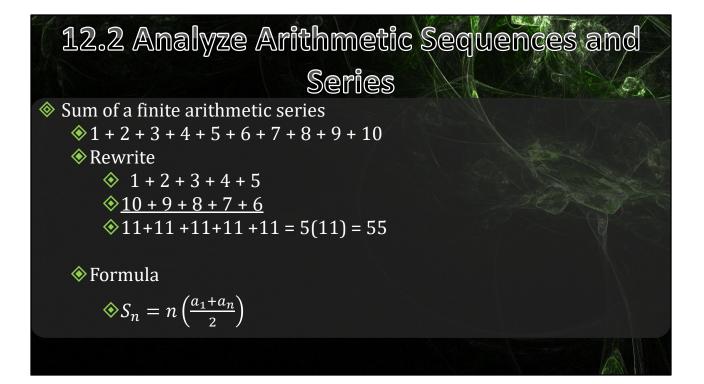


+ 4d + 29d

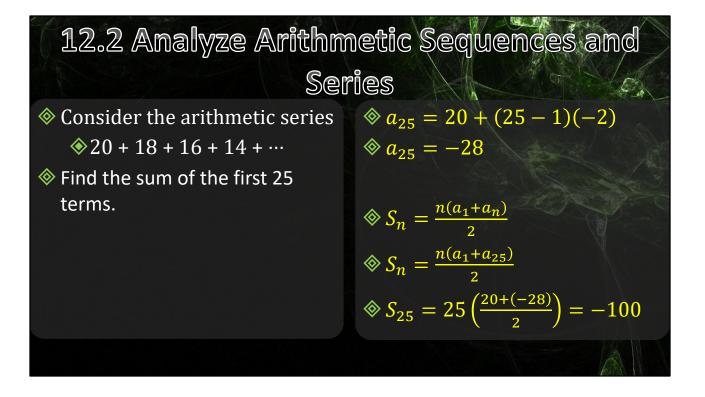
$$\begin{array}{l} a_{n} = a_{1} + (n - 1)d \\ 10 = a_{1} + (5 - 1)d & \rightarrow 10 = a_{1} \\ 110 = a_{1} + (30 - 1)d & \rightarrow 110 = a_{1} \\ \text{Linear combination} \\ -10 = -a_{1} - 4d \\ \underline{110 = a_{1} + 29d} \\ 100 = 25 d \\ d = 4 \end{array}$$

Substitute $10 = a_1 + 4d \rightarrow 10 = a_1 + 4(4) \rightarrow a_1 = -6$

Rule $a_n = -6 + (n-1)4 \rightarrow a_n = -6 + 4n - 4 \rightarrow a_n = 4n - 10$



From example: First and last $(a_1 + a_n) = 11$ 10 numbers but only half as many pairs (n/2)

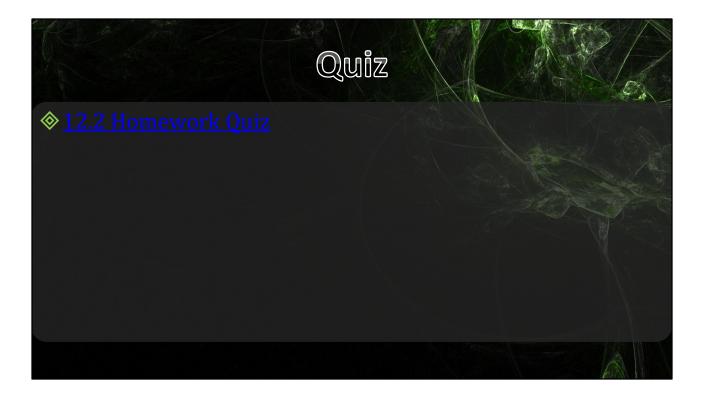


a₂₅ = 20 + (25-1)(-2) = -28 S₂₅ = 25((20+-28)/2) = -100

12.2 Analyze Arithmetic Sequences and
Series
* Consider the arithmetic series
*
$$20 + 18 + 16 + 14 + \cdots$$

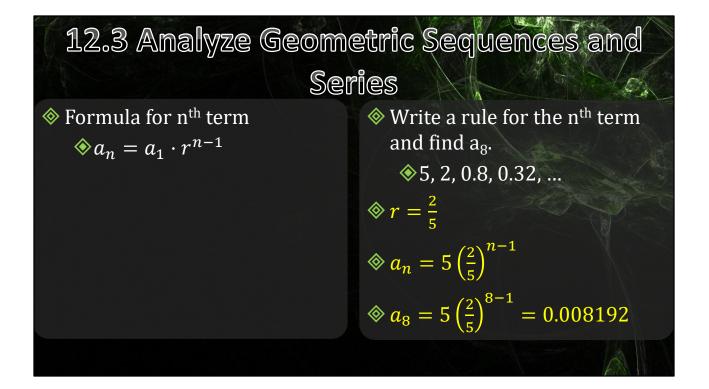
* Find n such that $S_n = -760$
* $S_n = n\left(\frac{a_1+a_n}{2}\right)$
* $a_n = 20 + (n-1)(-2)$
* $a_n = 22 - 2n$
* $a_n = 22 - 2n$
* $a_n = 22 - 2n$
* $a_n = 40, -19$

 $\begin{array}{l} a_n = 20 + (n-1)(-2) = 22 - 2n \\ S_n = -760 = n((20 + 22 - 2n)/2) \rightarrow -1520 = n(42 - 2n) \rightarrow -1520 = 42n - 2n^2 \rightarrow 2n^2 - 42n - 1520 = 0 \rightarrow n^2 - 21n - 760 = 0 \rightarrow (n+19)(n-40) = 0 \rightarrow n = 40, -19 \end{array}$



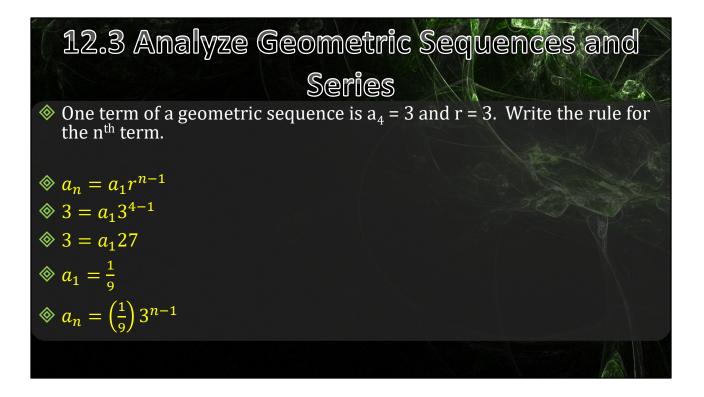
12.3 Analyze Geometric Sequences and Series • Created by multiplying by a common ratio (r) • Are these geometric sequences? • 1, 2, 6, 24, 120, ... • No • 81, 27, 9, 3, 1, ... • Yes, $r = \frac{1}{3}$

No Yes r = 1/3

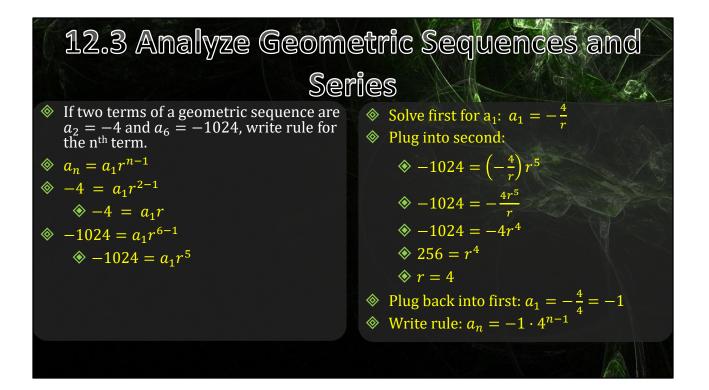


r = 2/5
$$a_n = 5(2/5)^{n-1}$$

 $a_8 = 5(2/5)^7 = 0.008192$



 $a_4 = 3 = a_1 3^{4-1} \rightarrow 3 = a_1 27 \rightarrow a_1 = 1/9$ $a_n = (1/9) 3^{n-1}$



$$a_2 = -4 = a_1 r^{2-1} \rightarrow -4 = a_1 r$$

 $a_6 = -1024 = a_1 r^{6-1} \rightarrow -1024 = a_1 r^5$

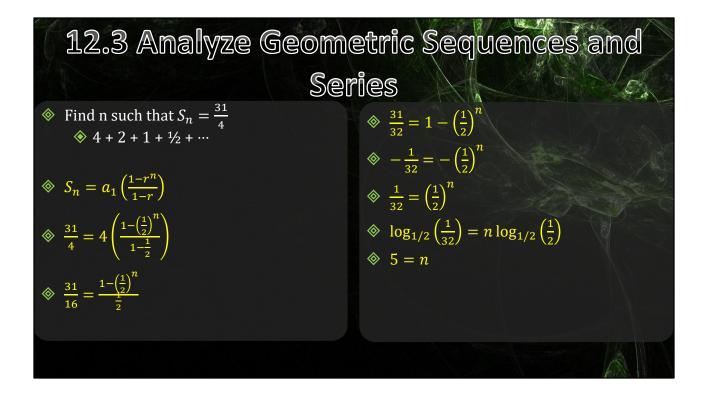
Solve first for a_1 : $a_1 = -4/r$ Plug into second: $-1024 = (-4/r)r^5 \rightarrow -1024 = -4r^5/r \rightarrow -1024 = -4r^4 \rightarrow 256 = r^4 \rightarrow r = 4$ Plug back into first: $a_1 = -4/4 \rightarrow a_1 = -1$ Write rule: $a_n = -1 \cdot 4^{n-1}$

12.3 Analyze Geometric Sequences and
Series
(* Sum of geometric series
(*
$$S_n = a_1\left(\frac{1-r^n}{1-r}\right)$$

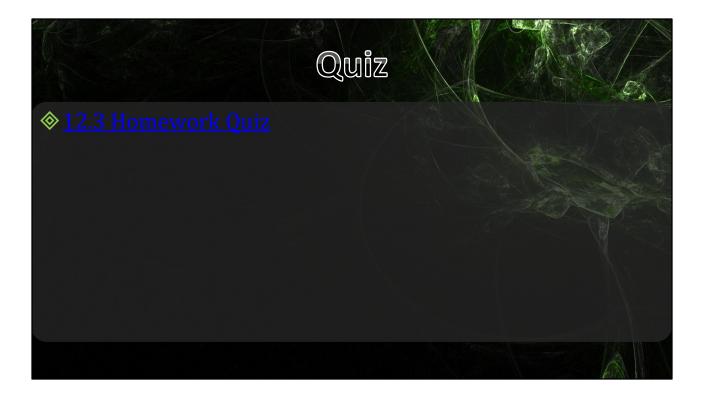
(* Find the sum of the first 10 terms of
(* $4 + 2 + 1 + \frac{1}{2} + \cdots$
(* $r = \frac{1}{2}, a_1 = 4$
(* $S_{10} = 4\left(\frac{\left(1-\left(\frac{1}{2}\right)^{10}\right)}{1-\frac{1}{2}}\right)$
(* $e = 4\left(\frac{.99902}{.5}\right)$
(* $e = \frac{1023}{128} = 7.992$

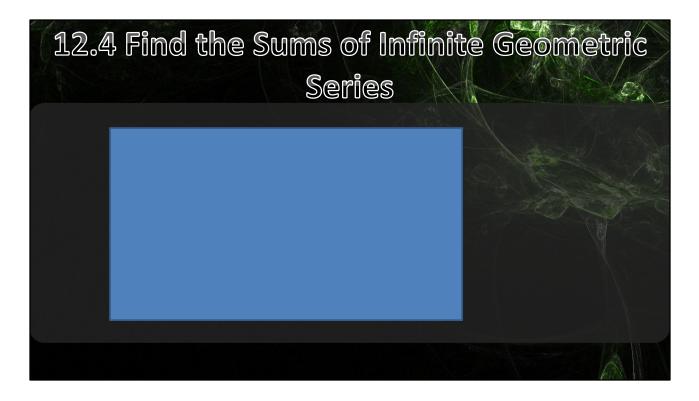
r = ½, a₁ = 4

 $\mathsf{S}_{10}=4((1-(\rlap{k}_2)^{10})/(1-\rlap{k}_2))=4(.99902/.5)=7.992=1023/128$

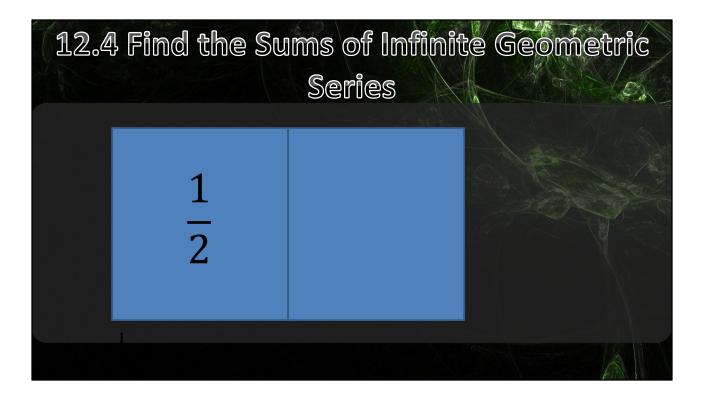


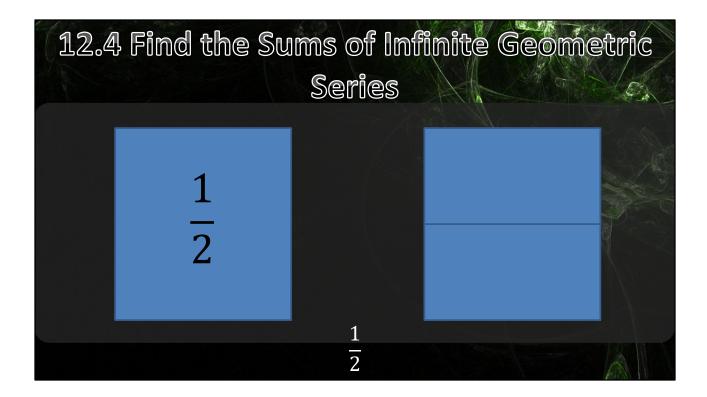
 $\begin{array}{l} 31/4 = 4((1 - (1/2)^{n})/(1 - 1/2)) \rightarrow 31/16 = (1 - (1/2)^{n})/(1/2) \rightarrow 31/32 = 1 - (1/2)^{n} \rightarrow -1/32 = -(1/2)^{n} \rightarrow 1/32 = (1/2)^{n} \rightarrow \log(1/32) = n \log(1/2) \rightarrow n = (\log(1/32)/\log(1/2)) = 5 \end{array}$

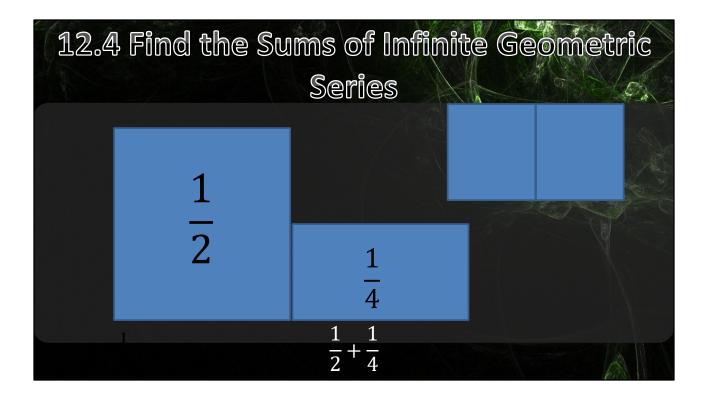


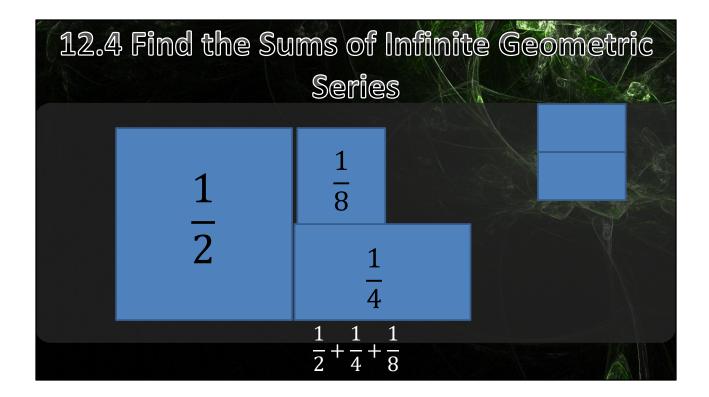


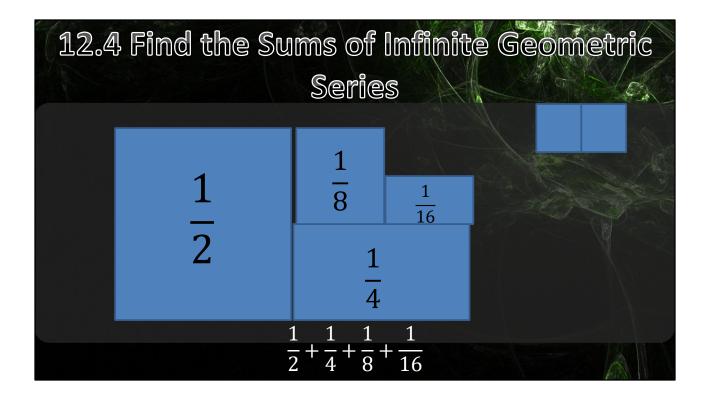
Think of the box a 1 whole piece

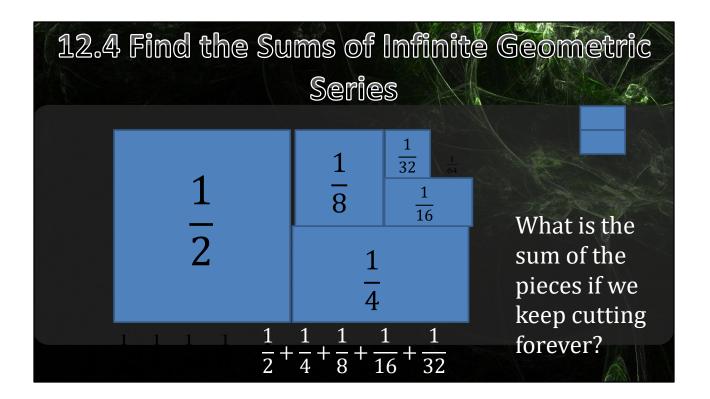




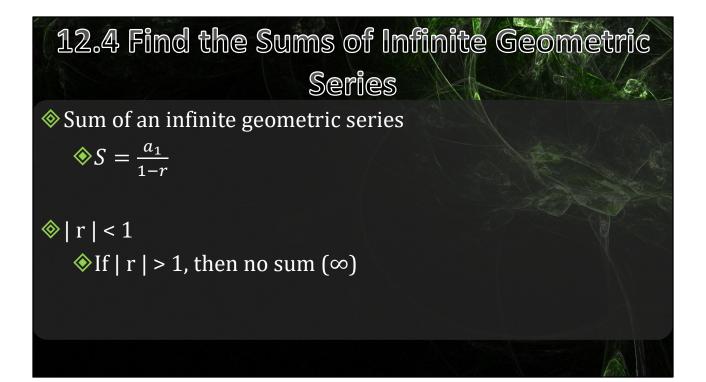


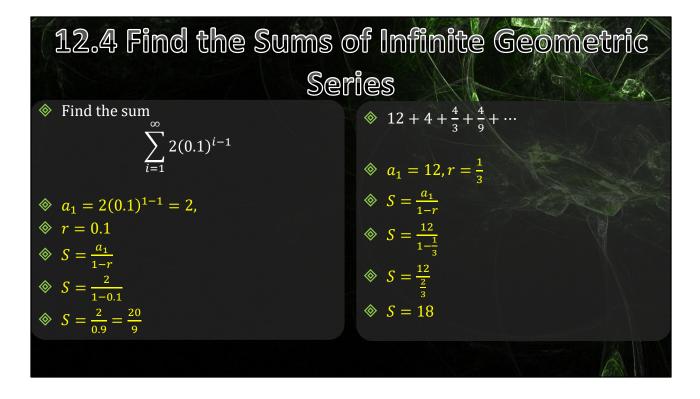






What is the sum of the pieces if we keep going? 1 piece

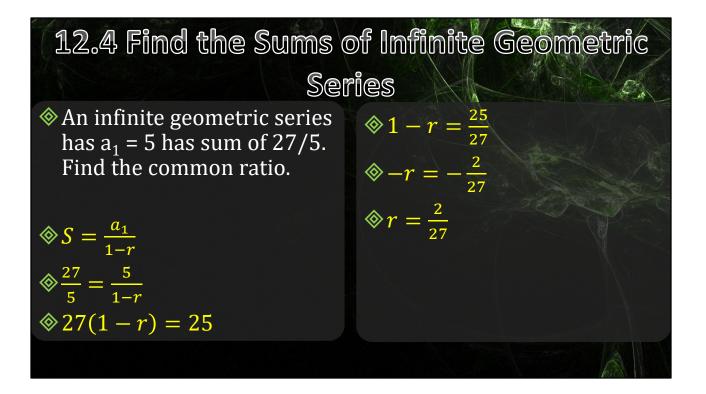




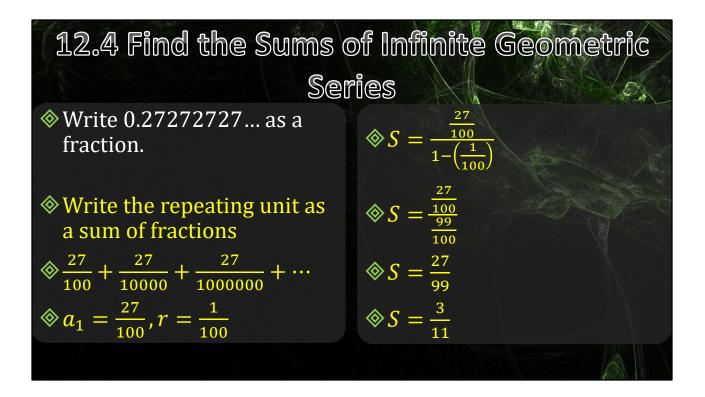
$$a_1 = 2(0.1)^{1-1} = 2, r = 0.1$$

S=2/(1-0.1) = 2/.9 = 20/9

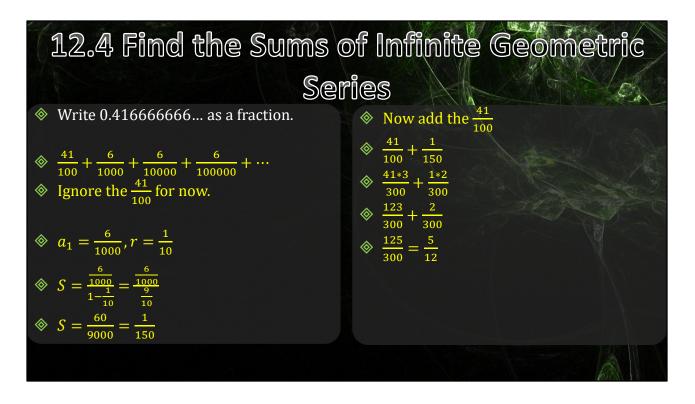
a₁ = 12, r = 1/3 S=12/(1-1/3) = 12/(2/3) = 36/2 = 18



 $27/5 = 5/(1-r) \rightarrow 27(1-r) = 5*5 \rightarrow 1-r = 25/27 \rightarrow -r = -2/27 \rightarrow r = 2/27$



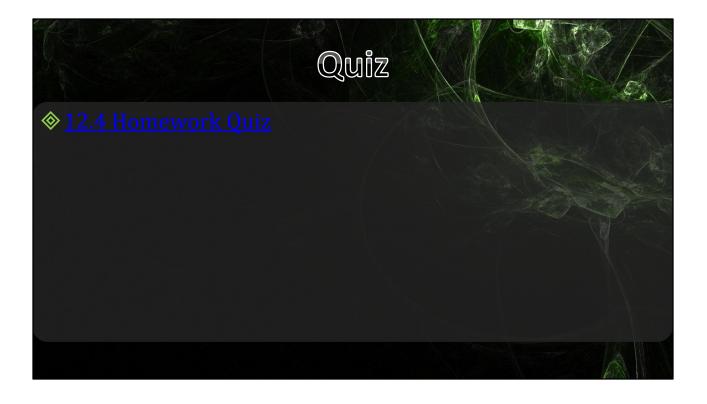
Write the repeating unit as a sum of fractions 27/100 + 27/10000 + 27/100000 + ... $a_1 = 27/100, r = 1/100$ S = (27/100)/(1-(1/100)) = (27/100)/(99/100) = 27/99 = 3/11

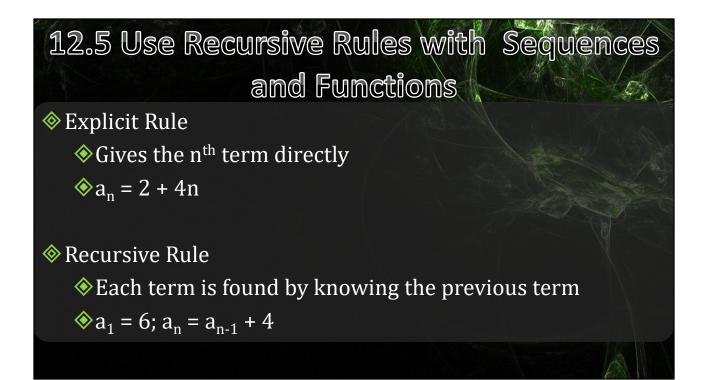


41/100 + 6/1000 + 6/10000 + 6/100000 + ... Ignore the 41/100 for now.

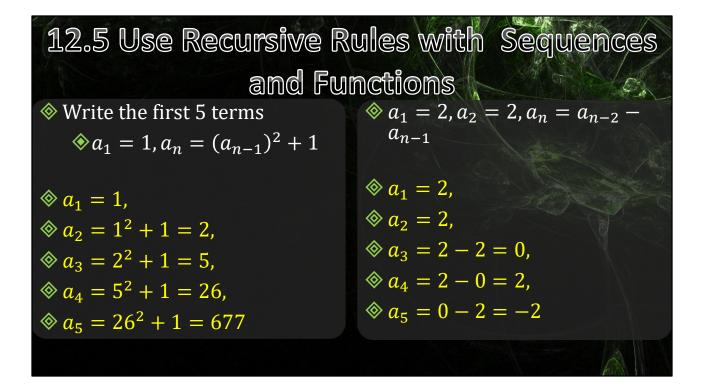
a₁ = 6/1000, r = 1/10 S = (6/1000)/(1-1/10) = (6/1000)/(9/10) = 60/9000 = 1/150

Now add the 41/100 41/100 + 1/150 \rightarrow (41*3)/300 + (1*2)/300 \rightarrow 123/300 + 2/300 \rightarrow 125/300 \rightarrow 5/12





Both these rules give the same sequence



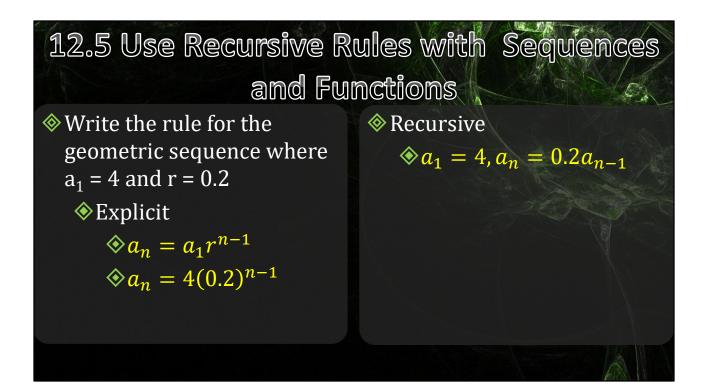
 $a_1 = 1$, $a_2 = 1^2 + 1 = 2$, $a_3 = 2^2 + 1 = 5$, $a_4 = 5^2 + 1 = 26$, $a_5 = 26^2 + 1677$

 $a_1 = 2$, $a_2 = 2$, $a_3 = 2 - 2 = 0$, $a_4 = 2 - 0 = 2$, $a_5 = 0 - 2 = -2$



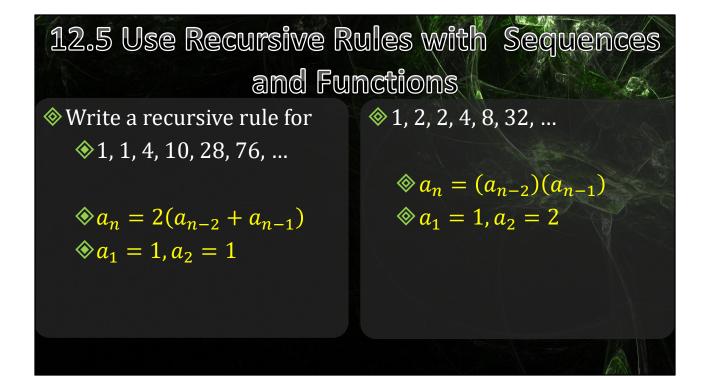
Explicit: $a_n = 15 + (n-1)5 \rightarrow a_n = 5n + 10$

Recursive: $a_1 = 15$, $a_n = a_{n-1} + 5$



Explicit: $a_n = 4(0.2)^{n-1}$

Recursive: $a_1 = 4$, $a_n = 0.2a_{n-1}$



 $a_1 = 1, a_2 = 1, a_n = 2(a_{n-2} + a_{n-1})$ $a_1 = 1, a_2 = 2, a_n = (a_{n-2})(a_{n-1})$

