Sequences and Series

Algebra 2 Chapter 12

This Slideshow was developed to accompany the textbook & Larson Algebra 2

♦ By Larson, R., Boswell, L., Kanold, T. D., & Stiff, L.

♦2011 Holt McDougal

Some examples and diagrams are taken from the textbook.

Slides created by Richard Wright, Andrews Academy rwright@andrews.edu

12.1 Define and Use Sequences and Series

Sequence

Function whose domain are integers
 List of numbers that follow a rule

♦ 2, 4, 6, 8, 10
♦ Finite
♦ 2, 4, 6, 8, 10, ...

♦Infinite

12.1 Define and Use Sequences and Series

Rule $a_n = 2n$

⊗Domain: (n)

Term's location (1st, 2nd, 3rd...)

Term's value (2, 4, 6, 8...)

12.1 Define and Use Sequences and Series

Writing rules for sequences
 Look for patterns
 Guess-and-check

 $\bigotimes \frac{2}{5}, \frac{2}{25}, \frac{2}{125}, \frac{2}{125}, \frac{2}{625}, \dots$

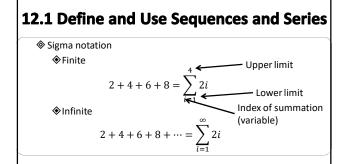
⊗3, 5, 7, 9, ...

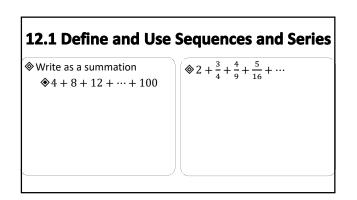
12.1 Define and Use Sequences and Series ♦ To graph ♦ n is like x; a_n is like y

♦The graph will be dots
♦Do NOT connect the dots

40

30 +				•	4
20 +					
10 +			_		
 0 +	•	+			
0		2	4		6

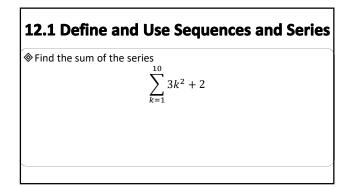

12.1 Define and Use Sequences and Series


♦ Series

♦Sum of a sequence

 $2, 4, 6, 8, \dots \rightarrow$ sequence

 $2+4+6+8+\cdots \rightarrow$ series


12.1 Define and Use Sequences and Series

Find the sum of the series $\sum_{k=5}^{10} k^2 + 1$

♦ Some shortcut formulas

 $\sum_{i=1}^{n} 1 = n$ $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

12.2 Analyze Arithmetic Sequences and Series

Arithmetic Sequences

Common difference (d) between successive terms
Add the same number each time
3, 6, 9, 12, 15, ...
d = 3

Is it arithmetic?

♦-10, -6, -2, 0, 2, 6, 10, ...
♦5, 11, 17, 23, 29, ...

12.2 Analyze Arithmetic Sequences and
SeriesSeriesSome seriesSome series<t

12.2 Analyze Arithmetic Sequences and Series

One term of an arithmetic sequence is a₈ = 50. The common difference is 0.25. Write the rule for the nth term.

12.2 Analyze Arithmetic Sequences and Series

Two terms of an arithmetic sequence are $a_5 = 10$ and $a_{30} = 110$. Write a rule for the nth term.

12.2 Analyze Arithmetic Sequences and Series Sum of a finite arithmetic series (1+2+3+4+5+6+7+8+9+10)Rewrite (1+2+3+4+5) (2+3+4+5) (2+3+4+5) (3+12+3+4)(3+12+3+4)

12.2 Analyze Arithmetic Sequences and Series

Consider the arithmetic series
 20 + 18 + 16 + 14 + …

♦ Find the sum of the first 25 terms.

12.2 Analyze Arithmetic Sequences and Series

Consider the arithmetic series
 20 + 18 + 16 + 14 + …

Find n such that S_n = -760

12.3 Analyze Geometric Sequences and

Series

Created by multiplying by a common ratio (r)

Are these geometric sequences?
\$1, 2, 6, 24, 120, ...

81, 27, 9, 3, 1, ...

12.3 Analyze Geometric Sequences and Series				

12.3 Analyze Geometric Sequences and Series

Solution \otimes One term of a geometric sequence is $a_4 = 3$ and r = 3. Write the rule for the nth term.

12.3 Analyze Geometric Sequences and Series

If two terms of a geometric sequence are $a_2 = -4$ and $a_6 = -1024$, write rule for the nth term.

12.3 Analyze Geometric Sequences and Series		
Sum of geometric series $\$S_n = a_1 \left(\frac{1-r^n}{1-r}\right)$	 Find the sum of the first 10 terms of 4 + 2 + 1 + ½ + … 	

12.3 Analyze Geometric Sequences and Series

Find n such that $S_n = 31/4$ $4 + 2 + 1 + \frac{1}{2} + \cdots$

12.4 Find the Sums of Infinite Geometric Series Sum of an infinite geometric series $\circledast S = \frac{a_1}{1-r}$ $\circledast |r| < 1$ $\circledast |f| |r| > 1$, then no sum (∞)

12.4 Find the Sums of Infinite Geometric Series		
Find the sum $\sum_{i=1}^{\infty} 2(0.1)^{i-1}$	$12 + 4 + \frac{4}{3} + \frac{4}{9} + \cdots$	

12.4 Find the Sums of Infinite Geometric Series

An infinite geometric series has $a_1 = 5$ has sum of 27/5. Find the common ratio.

12.4 Find the Sums of Infinite Geometric Series

Write 0.27272727... as a fraction.

12.4 Find the Sums of Infinite Geometric

Series

♦ Write 0.416666666... as a fraction.

12.5 Use Recursive Rules with Sequences and Functions

♦ Explicit Rule

 $\ensuremath{\mathfrak{S}}$ Gives the n^th term directly

 $a_n = 2 + 4n$

Recursive Rule

♦ Each term is found by knowing the previous term

 $a_1 = 6; a_n = a_{n-1} + 4$

12.5 Use Recursive Rules with Sequences and Functions		
Write the first 5 terms $a_1 = 1$, $a_n = (a_{n-1})^2 + 1$	$a_1 = 2, a_2 = 2, a_n = a_{n-2} - a_{n-1}$	

12.5 Use Recursive Rules with Sequences and Functions

Write the rules for the arithmetic sequence where $a_1 = 15$ and $a_2 = 5$.

♦Explicit

♦ Recursive

12.5 Use Recursive Rules with Sequences and Functions

Write the rule for the geometric sequence where $a_1 = 4$ and r = 0.2

♦Explicit

Recursive

12.5 Use Recursive Rules with Sequences and Functions			
 ♦ Write a recursive rule for ♦ 1, 1, 4, 10, 28, 76, 	\$ 1, 2, 2, 4, 8, 32,		