

cgThis Slideshow was developed to accompany the textbook

№Larson Algebra 2

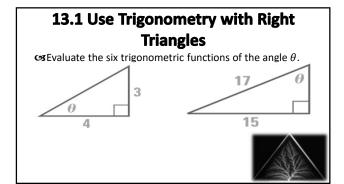
№ By Larson, R., Boswell, L., Kanold, T. D., & Stiff, L.

№2011 Holt McDougal

CSome examples and diagrams are taken from textbook.

Slides created by Richard Wright, Andrews Academy rwright@andrews.edu

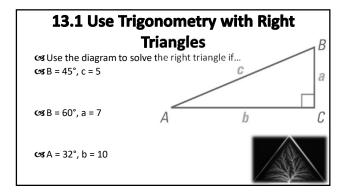
13.1 Use Trigonometry with Right Triangles If you have a right triangle, there are six ratios of sides that are always constant Solve in $\theta = \frac{\text{opposite}}{\text{hypotenuse}}$ Solve it an $\theta = \frac{\text{opposite}}{\text{adjacent}}$ Solve it an $\theta = \frac{\text{opposite}}{\text{adjacent}}$ Solve it and it is a side in the solve it is a side in the side in the side in the solve it is a side in the side in th

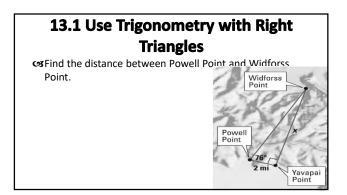


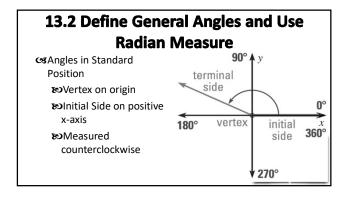
13.1 Use Trigonometry with Right Triangles of In a right triangle, θ is an acute angle and

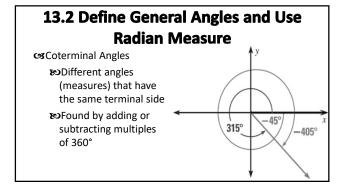
CSIn a right triangle, θ is an acute angle and $\cos \theta = \frac{7}{10}$. What is $\sin \theta$?

13.1 Use Trigonometry with Right		
Triangles	1	
Special Right Triangles	/	
cs 30° - 60° - 90°	$2/30^{\circ}$ $\sqrt{3}$	
cs45° - 45° - 90°	60°	



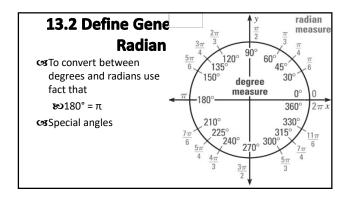




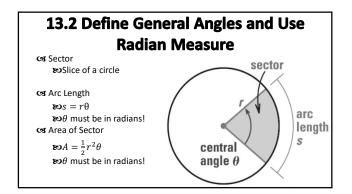


13.2 Define General Angles and Use Radian Measure Straw an angle with the given measure in standard position. Then find one positive coterminal angle and one negative coterminal angle. Straw 65° Straw 300°

13.2 Define General Angles and Use		
Radian M		
ଔ Radian measure		
⊗ Another unit to measure angles		
№1 radian is the angle when the arc length = the radius		
ε There are 2π radians in a circle		



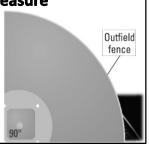
13.2 Define General Angles and Use Radian Measure Stream Convert the degree measure to radians, or the radian measure to degrees. Stream 135° Stream 5\frac{\pi}{4} Stream 5\frac{\pi}{4}



13.2 Define General Angles and Use Radian Measure

S Find the length of the outfield fence if it is 220 ft from home plate.

🗷 Find the area of the baseball field.

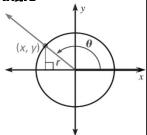


13.3 Evaluate Trigonometric Functions of Any Angle

Think of a point on the terminal side of an angle
 You can draw a right triangle with the x-axis

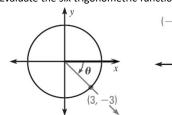
Cos $\cos \theta = \frac{y}{r}$ $\csc \theta = \frac{r}{y}$ $\sec \theta = \frac{r}{x}$

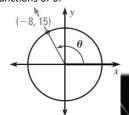
 $\cos \tan \theta = \frac{y}{x} \qquad \cot \theta =$ $\cos \text{Unit Circle}$ $\sec r = 1$



13.3 Evaluate Trigonometric Functions of Any Angle

GS Evaluate the six trigonometric functions of θ .





13.3 Evaluate Trigonometric Functions of Any Angle

cs Evaluate the six trigonometric functions of $\theta.$ cs θ = 180°

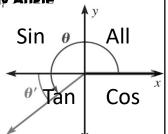
13.3 Evaluate Trigonometric Functions of Any Angle

☑ Reference Angle

№Angle between terminal side and x-axis

★ Has the same values for trig functions as 1st quadrant angles

>>>You just have to add the negative signs



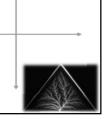
13.3 Evaluate Trigonometric Functions of Any Angle

©Sketch the angle. Then find its reference angle.

ଔ150°

 $\mathbf{CS} - \frac{7\pi}{9}$

© Evaluate cos(-60°) without a calculator



13.3 Evaluate Trigonometric Functions

of Any Angle

SE Estimate the horizontal distance traveled by a Red Kangaroo who jumps at an angle of 8° and with an initial speed of 53 feet per second (35 mph).

13.4 Evaluate Inverse Trigonometric Functions

c Find an angle whose tangent = 1

$$\mathbf{x}_{\frac{\pi}{4}}, \frac{5\pi}{4}, -\frac{3\pi}{4}, \text{ etc.}$$

In order to find angles given sides (or x and y define the functions carefully

13.4 Evaluate Inverse Trigo sin⁻¹ a⁻¹ **Functions ™** Inverse Trig Functions cos⁻¹ a ↑

 $\operatorname{cs} \sin^{-1} a = \theta$

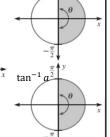
$$80 - \frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$

$$\cos^{-1}\frac{1}{2} \le \theta \le \frac{1}{2}$$

$$\cos^{-1}a = \theta$$

$$\operatorname{cs} \tan^{-1} a = \theta$$

$$\mathbf{xo} - \frac{\pi}{2} < \theta < \frac{\pi}{2}$$



13.4 Evaluate Inverse Trigonometric Functions

☑ Evaluate the expression in both radians and degrees.

$$\operatorname{cs}\sin^{-1}\frac{\sqrt{2}}{2}$$

 $\cos^{-1}\frac{1}{2}$

cstan⁻¹ −1

13.4 Evaluate Inverse Trigonometric Functions

vs Solve the equation for θ vs $\cos \theta = 0.4;270^{\circ} < \theta < 360^{\circ}$

 $\cos \tan \theta = 4.7; 180^{\circ} < \theta < 270^{\circ}$

cs $\sin \theta = 0.62; 90^{\circ} < \theta < 180^{\circ}$

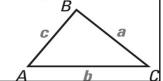
13.4 Evaluate Inverse Trigonometric Functions CSF Find the measure of angle θ.

13.5 Apply the Law of Sines

S In lesson 13.1 we solved right triangles
 In this lesson we will solve any triangle if we know
 Angles and 1 Side (AAS or ASA)
 Sides and 1 Angle opposite a side (SSA)_

८ Law of Sines

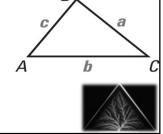
$$\mathbf{x0}\frac{\sin}{a} = \frac{\sin}{b} = \frac{\sin}{c}$$



13.5 Apply the Law of Sines B_{\nwarrow}

cSolve ΔABC if...

№A = 51°, B = 44°, c = 11



13.5 Apply the Law of Sines

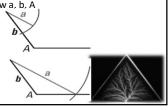
ঙ্গে Indeterminant Case (SSA)

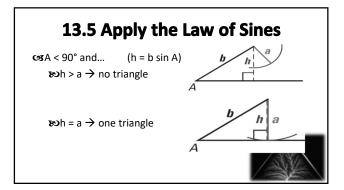
Maybe no triangle, one triangle, or two triangles

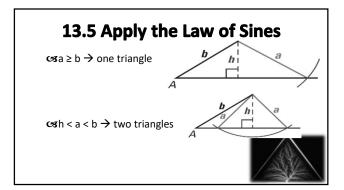
Solution these examples, you know a. b. A
Solution the solutio

· ·

 ∞ a > b → 1 triangle







13.5 Apply the Law of Sines	
c sSolve ΔABC & OA = 122°, a = 18, b = 12	
№ A = 36°, a = 9, b = 12	

13.5 Apply the Law of Sines

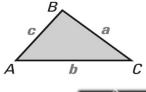
⇔ Area of Triangle

$$\Re Area = \frac{1}{2}bh$$

$$\mathbf{so}h = c \sin A$$

$$\mathbf{so}Area = \frac{1}{2}bc\sin A$$

Solution Find the area of \triangle ABC with... Solution area of \triangle ABC with...



13.6 Apply the Law of Cosines

When you need to solve a triangle and can't use Law of Sines, use Law of Cosines

№2 Sides and Included angle (SAS)

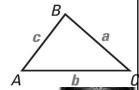
№3 Sides (SSS)

∠s Law of Cosines

$$\mathbf{so}a^2 = b^2 + c^2 - 2bc \cos A$$

$$\mathbf{so}b^2 = a^2 + c^2 - 2ac\cos B$$

$$\mathbf{so}c^2 = a^2 + b^2 - 2ab\cos C$$



13.6 Apply the Law of Cosines

Solve ∆ABC if...

∞a = 8, c = 10, B = 48°

ಖa = 14, b = 16, c = 9

13.6 Apply the Law of Cosines We Heron's Area Formula Property Area = $\sqrt{s(s-a)(s-b)(s-c)}$ So Where $s=\frac{1}{2}(a+b+c)$ We Find the area of \triangle ABC