1. Graph the numbers on a number line: 7, $\frac{3}{5}$, 4, 10, 8, −6. (Lesson 1.1)

Evaluate the expression for the given value of the variable. (Lesson 1.2)

2. $5c + 1$ when $c = 2$
3. $(t - 3)^2 + 1$ when $t = 4$

4. Look for a pattern in the table. Then write an equation that represents the table. (Lesson 1.5)

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Tell whether the relation is a function. (Lesson 2.1)

5. $(-3, 2), (-1, 3), (1, 3), (2, 4)$
6. $(-1, 1), (2, -3), (-2, 5), (-3, -6)$

The variables x and y vary directly. Write an equation that relates x and y. Then find y when $x = 4$. (Lesson 2.5)

7. $x = 3, y = 6$
8. $x = 12, y = 3$

Graph the linear system and estimate the solution. Then check the solution algebraically. (Lesson 3.1)

9. $y = x + 3$
 $y = 2x - 1$
10. $y = 3x + 4$
 $y = x - 1$

Evaluate the determinant of the matrix. (Lesson 3.7)

11. $\begin{bmatrix} 5 & -1 \\ 6 & 2 \end{bmatrix}$
12. $\begin{bmatrix} 2 & -3 & 4 \\ 1 & 1 & 0 \\ 3 & -2 & 2 \end{bmatrix}$
13. $\begin{bmatrix} 6 & 2 & -4 \\ -3 & 1 & -2 \\ 5 & 3 & 1 \end{bmatrix}$

Write the quadratic function in standard form. (Lesson 4.2)

14. $y = (x + 2)(x + 1)$
15. $y = (x - 3)^2 + 1$

Use the quadratic formula to solve the equation. (Lesson 4.8)

16. $x^2 - x - 6 = 0$
17. $2j^2 - 9j + 4 = 0$

Use direct substitution to evaluate the polynomial function for the given value of x. (Lesson 5.2)

18. $f(x) = 2x^5 - 4x^3 + x - 3; x = 1$
19. $f(x) = -3x^2 + 2x + 1; x = -2$

List the possible rational zeros of f using the rational zero theorem. (Lesson 5.6)

20. $f(x) = x^3 + 3x^2 - 5x + 6$
21. $f(x) = 3x^3 + 2x^2 - 6x + 18$
Let \(f(x) = 0.5x \), \(g(x) = -x^2 \), and \(h(x) = 2x \). Find the indicated value. (Lesson 6.3)

22. \(f(f(-4)) \)
23. \(g(f(3)) \)
24. \(g(h(2)) \)

Graph the function. State the domain and range. (Lesson 7.1)

25. \(f(x) = 3^x + 1 \)
26. \(g(x) = 2^x - 1 - 1 \)

Expand the expression. (Lesson 7.5)

27. \(\log_2 10x^2 \)
28. \(\log_3 \frac{8x}{7} \)

Tell whether \(x \) and \(y \) show direct variation, inverse variation, or neither. (Lessons 8.1)

29. \(x = \frac{y}{6} \)
30. \(x = y + 2 \)
31. \(xy = 7 \)

Graph the equation. Identify the radius of the circle. (Lesson 9.3)

32. \(x^2 + y^2 = 121 \)
33. \(4y^2 = -4x^2 + 4 \)
34. \(x^2 + y^2 = 100 \)

Find the number of distinguishable permutations of the letters in the word. (Lesson 10.1)

35. PICNIC
36. STATISTICS

Find the number of combinations. (Lesson 10.2)

37. \(4C_3 \)
38. \(8C_4 \)
39. \(7C_0 \)

Use the binomial theorem to write the binomial expression. (Lesson 10.2)

40. \((r + 3)^4 \)
41. \((x^2 - 2y)^3 \)

You randomly choose a marble from a bag. The bag contains 5 white, 3 red, and 2 blue marbles. Find the indicated odds. (Lesson 10.3)

42. In favor of choosing blue
43. Against choosing red

Events \(A \) and \(B \) are independent. Find the indicated probability. (Lesson 10.5)

44. \(P(A) = 0.25 \)
45. \(P(A) = ______ \)
46. \(P(A) = 0.9 \)

\(P(B) = 0.3 \)
\(P(B) = 0.4 \)
\(P(B) = ______ \)

\(P(A \text{ and } B) = ______ \)
\(P(A \text{ and } B) = 0.2 \)
\(P(A \text{ and } B) = 0.81 \)

Calculate the probability of tossing a coin six times and getting the given number of tails. (Lesson 10.6)

47. \(2 \)
48. \(0 \)
49. \(5 \)