Tell whether \(x \) and \(y \) show direct variation, inverse variation, or neither.

1. \(y = 2x + 3 \)
2. \(y = \frac{x}{3} \)
3. \(x = \frac{3}{y} \)
4. \(\frac{1}{2}xy = 2 \)

The variables \(x \) and \(y \) vary inversely. Use the given values to write an equation relating \(x \) and \(y \). Then find \(y \) when \(x = 0.5 \).

5. \(x = 4, y = 6 \)
6. \(x = 2, y = \frac{5}{2} \)
7. \(x = 48, y = \frac{1}{12} \)

8. \(x = -3, y = 2 \)
9. \(x = \frac{4}{3}, y = \frac{3}{2} \)
10. \(x = \frac{1}{2}, y = \frac{1}{3} \)

Determine whether \(x \) and \(y \) show direct variation, inverse variation, or neither.

11. \[
\begin{array}{cccc}
 x & 1 & 2 & 3 \\
 y & 1 & 4 & 9 \\
\end{array}
\]
12. \[
\begin{array}{cccc}
 x & 2 & 5 & 8 & 15 \\
 y & 60 & 24 & 15 & 8 \\
\end{array}
\]
13. \[
\begin{array}{cccc}
 x & 1 & 4 & 7 & 10 \\
 y & 7.5 & 30 & 52.5 & 75 \\
\end{array}
\]

The variable \(z \) varies jointly with \(x \) and \(y \). Use the given values to write an equation relating \(x \), \(y \), and \(z \). Then find \(z \) when \(x = 4 \) and \(y = 7 \).

14. \(x = 3, y = 5, z = 30 \)
15. \(x = 6, y = \frac{1}{2}, z = 24 \)
16. \(x = \frac{3}{2}, y = 18, z = 9 \)

In Exercises 17–20, use the following information.

Simple Interest The simple interest \(I \) (in dollars) for a savings account is jointly proportional to the product of the time \(t \) (in years) and the principal \(P \) (in dollars). After fifteen months, the interest on a principal of $2500 is $78.13.

17. Find the constant of variation \(k \).
18. Write an equation that relates \(I \), \(t \), and \(P \).
19. What will the interest \(I \) be after ten years?
20. What does the constant of variation \(k \) represent?

In Exercises 21–23, use the following information.

Boyle’s Law Boyle’s Law states that for a constant temperature, the pressure \(p \) of a gas varies inversely with its volume \(V \). A sample of oxygen gas has a volume of 50.25 cubic milliliters at a pressure of 20.6 atmospheres.

21. Find the constant of variation \(k \).
22. Write an equation that relates \(p \) and \(V \).
23. Find the volume of the oxygen gas if the pressure changes to 15.2 atmospheres.
Find the vertical and horizontal asymptotes of the graph of the function.

1. \(f(x) = \frac{4}{x - 2} + 1 \)
2. \(f(x) = \frac{2x + 2}{3x - 4} \)
3. \(f(x) = \frac{x + 1}{2x - 3} \)
4. \(f(x) = \frac{4x}{2x + 3} \)
5. \(f(x) = \frac{2x - 1}{x - 2} \)
6. \(f(x) = \frac{6x - 1}{3x + 6} \)

Graph the function. State the domain and range.

7. \(f(x) = \frac{2}{x + 3} \)
8. \(f(x) = \frac{x + 1}{x - 3} \)
9. \(f(x) = \frac{4x}{2x - 1} \)
10. \(f(x) = \frac{-3}{x + 2} \)
11. \(f(x) = \frac{3x - 2}{2x + 1} \)
12. \(f(x) = \frac{4}{3x - 2} - 1 \)

In Exercises 13–16, use the following information.

Phone Bill Your local phone company charges a $65 installation fee and a monthly fee of $32. Let \(x \) represent the number of months of phone service.

13. Write an equation that represents the total cost \(C \).
14. Write an equation that represents the average cost \(A \) per month.
15. Graph the model in Exercise 14.
16. How many months until the average cost per month is $33.25?